# Air Quality Status of Maharashtra





Maharashtra Pollution Control Board महाराष्ट्र प्रदूषण नियंत्रण मंडळ



# Air Quality Status of Maharashtra 2013-14

(Compilation of Air Quality DaRecorded by MPCB)

May2014



Maharashtra Pollution Control Board महाराष्ट्र प्रदूषण नियंत्रण मंडळ



...towards global sustainable development

राजीव कुमार मित्तल भाष्रसे सदस्य सचिव Rajcev Kumar Mital IAS

MEMBER SECRETARY



महाराष्ट्र प्रदूषण नियंत्रण मंडळ MAIIARASHITRA POLLUTION CONTROL BOARD

#### PREFACE

Maharashtra Pollution Control Board (MPCB) has established Ambient Air Quality Network in Maharashtra covering major cities to comply with the mandate of Air (Prevention & Control of Pollution) Act, 1981 and to disseminate status of air quality prevailing in the State of Maharashtra.

The Ambient air quality is monitored by the Board through manually operated stations at various locations in Maharashtra under National Ambient Air Quality Monitoring Program (NAMP) / State Ambient Air Quality Monitoring Program (SAMP) and Continuous Ambient Air Quality Monitoring Stations (CAAQMS) at Mumbai, Pune and Solapur. The Air Quality data is regularly hosted on MPCB's website.

This report compiles and presents illustrative statistical data of the ambient air quality in Maharashtra for the fiscal year 2013-14 along with Air Quality status comparison of last few years. I trust this report will help all stake holders to take necessary mitigation measures.

This report is prepared by The Energy and Resources Institute (TERI), Western Regional Centre (WRC), Mumbai and I appreciate the efforts of Dr. Anjali Parasnis, *Associate Director*, TERI and Shri. Prathamesh Chourey *Associate Fellow*, TERI in preparing this report for the Board. I also acknowledge the monitoring agencies for their efforts in the field for monitoring work carried out to generate the air quality data. The contribution of Shri V.M. Motghare, *Joint Director* and Shri S.C. Kollur, *Scientific Officer*, MPCB is also appreciated.

(Rajeev Kumar Mital, IAS) Member Secretary

May' 2014

P.

iii

# Table of Contents

| A BBREVIATIONS                                       | . V  |
|------------------------------------------------------|------|
| LIST OF FIGURES                                      | VII  |
| LIST OF TABLES                                       | IX   |
| Executive Summary                                    | 1    |
|                                                      | . 7  |
| Air Pollution                                        |      |
| Challenges and Initiatives in India                  |      |
| Central Pollution Control Board                      |      |
| Maharashtra Pollution Control Board                  | . 10 |
| A IR QUALITY MONITORING IN MAHARASHTRA               | 11   |
| Monitoring Network                                   | 11   |
| Pollutants Monitored                                 |      |
| Air Quality Monitoring Data                          |      |
| STATUS OF A IR QUALITY                               | 15   |
| Sulphur dioxide                                      | . 15 |
| Trend of SQ Concentrations in the state              | 16   |
| SO <sub>2</sub> concentrations in industrial areas   | 18   |
| SO <sub>2</sub> concentrations in residential areas  | 20   |
| SO2 concentrations in rurlaand other areas           | 22   |
| SO <sub>2</sub> concentrations in commercial areas   | 24   |
| Oxides of Nitrogen                                   | 25   |
| Trend of NO <sub>x</sub> Concentrations in the state | 26   |
| NO x concentration in industrial areas               | 28   |
| NO x concentration in residetial areas               | 30   |
| NO x concentration in rural and other areas          | 32   |
| NO x concentration in commercial areas               |      |
| Respirable Suspended Particulate Matter (RSP.M.)     |      |
| Trend of RSPM Concentrations                         |      |
| RSPM concentation in industrial areas                | 38   |
| RSPM concentration in residential areas              |      |
| RSPM concentration in rural and other areas          |      |
|                                                      |      |
| RSPM concentration in commercial areas               |      |
| Carbon Monoxide                                      |      |
| Ozone                                                |      |
| Benzene                                              |      |
| A IR QUALITY INDEX                                   | .49  |

| AQI for Indian Standards                                   |
|------------------------------------------------------------|
| AQI for AAQMS in Maharashtra                               |
| Conclusion                                                 |
| Annex Ì I: List of AAQMS in Maharash tra Ì 201314          |
| A NNEX Ì II: D ATA RECORDED BY AAQMS IN MAHARASHTRA 201314 |
| RO Amravati                                                |
| Akola - LRT Commerce College                               |
| Akola - MIDC Water Works 72                                |
| Akola - Akola College of Engg & Technology 74              |
| Amravati - Raj Kamal Chowk                                 |
| Amravati - Govt. College of Engineering                    |
| Amravati - Godhadiwala Private Limited                     |
| RO Aurangabad                                              |
| Aurangabad - SBES College                                  |
| Aurangabad - Collector Office, Aurangabad                  |
| Aurangabad - C.A.D.A. Office                               |
| Jalna - Bachat Bhavan                                      |
| Jalna - Krishnadhan seeds Ltd                              |
| Latur - MIDC Water Works                                   |
| Latur-Shyam Nagar-Kshewraj Vidyalaya                       |
| Latur - Ganj Golai - Sidhheshwar Bank                      |
| Nanded - Ganeshnagar                                       |
| Nanded - Mutha Chowk 102                                   |
| Nanded - Industrial Area CIDCO                             |
| RO - Chandrapur                                            |
| Chandrapur - Ghuggus 108                                   |
| Chandrapur - Chandrapur - MIDC                             |
| Chandrapur - Chandrapur - SRO MPCB 112                     |
| Chandrapur - Tadali MIDC 114                               |
| Chandrapur - Ballarshah 116                                |
| Chandrapur - Rajura                                        |
| RO Kalyan 121                                              |
| Ambernath 122                                              |
| Badlapur - Badlapur - BIWA House                           |
| Bhiwandi - I.G.M. Hospital                                 |
| Bhiwandi - Prematai hall 128                               |





| Dombivali                                      | 130   |
|------------------------------------------------|-------|
| Dombivali - MIDC Office Dombivali              | 132   |
| Kalyan - MPCB RO Kalyan office                 | 134   |
| Ulhasnagar - Smt. CHM College Campus           | 136   |
| Ulhasnagar - Powai Chowk                       | 138   |
| RO Kolhap ur                                   | 141   |
| Chiplun - Chiplun - MIDC Chalkewadi            | 142   |
| Chiplun - Chiplun - Water Treatment            | 144   |
| Kolhapur - Shivaji University Campus           | 146   |
| Kolhapur - Ruikar Trust                        | . 148 |
| Kolhapur - Mahadwar Road                       | 150   |
| Sangli - Terrace of SRGSangli, Udyog Bhavan    | . 152 |
| Sangli - Sangli-Miraj Primary Municipal school | . 154 |
| Sangli - Krishna Valley school                 | 156   |
| RO Mumbai                                      | 159   |
| Mumbai - Bandra                                | 160   |
| Mumbai - Sion                                  | 162   |
| AAQMS monitored by NEERI in Mumbai             | 164   |
| RO Nagpur                                      | 167   |
| Nagpur - IOE North Ambazari road               | 168   |
| Nagpur - MIDC Office, Hingna Road              | 170   |
| Nagpur - Govt Polytechnic Col, Sadar           | 172   |
| Nagpur - Civil lines Nagpur                    | 174   |
| RO Nashik                                      | 177   |
| Jalgaon - Old B. J. Market                     |       |
| Jalgaon - Girna Water Tank                     | 180   |
| Jalgaon - MIDC Jalgaon                         | . 182 |
| Nashik - RTO Colony                            | 184   |
| Nashik - MIDC Satpur - VIP                     | 186   |
| Nashik Ì NMC Nashik                            | . 188 |
| Nashik - SRO Office Nashik                     | 190   |
| RO Navi Mumbai                                 |       |
| Navi Mumbai - Rabale                           |       |
| Navi Mumbai - Nerul - DY Patil                 | 196   |
| Navi Mumbai - Mahape, MPCB-Nirmal Bhavan       | 198   |



| Navi Mum bai - Airoli                  | 200 |
|----------------------------------------|-----|
| Navi Mumbai - Vashi                    | 202 |
| Taloja - Kharghar - CIDCO Nodal Office | 204 |
| Taloja - MIDC Building                 | 206 |
| RO Pune                                | 209 |
| Pune - Bhosari                         | 210 |
| Pune - Nal Stop                        | 212 |
| Pune - Swargate, Pune                  | 214 |
| Pune - Pimpri-Chinchwad - BOB Building | 216 |
| Pune - Karve Road - CAAQMS             | 218 |
| Solapur - WIT Campus                   | 220 |
| Solapur - Saat RastaChithale Clinic    | 222 |
| Solapur - Solapur                      | 224 |
| RO Raigad                              | 227 |
| Panvel - Panvel- Water Supply Plant    | 228 |
| RO Thane                               | 231 |
| Thane - Kopri                          | 232 |
| Thane - Naupada                        | 234 |
| Thane - Kolshet                        | 236 |
| Thane Ì Balkum Glaxo                   | 238 |
| A PPENDIX Ì A: REVISED NAA QS 2009     | 241 |



#### Abbreviations

| AAQM            | Ambient Air Quality Monitoring                                 |
|-----------------|----------------------------------------------------------------|
| AAQMS           | Ambient Air Quality Monitoring Stations                        |
| ALRI            | Acute Lower Respiratory Infections                             |
| AMR             | Amravati                                                       |
| AQI             | Air Quality Index                                              |
| Ar              | Argon                                                          |
| AUR             | Aurangaba d                                                    |
| CAAQMS          | Continuous Ambient Air Quality Monitoring Stations             |
| CDP             | Chandrapur                                                     |
| CH <sub>4</sub> | Methane                                                        |
| CIDCO           | City and Industrial Development Corporation of Maharashtra Ltd |
| СО              | Carbon Monoxide                                                |
| CO 2            | Carbon-di-oxide                                                |
| СРСВ            | Central Pollution Control Board                                |
| GoM             | Government of Maharashtra                                      |
| H <sub>2</sub>  | Hydrogen                                                       |
| He              | Helium                                                         |
| КОР             | Kolhapur                                                       |
| Kr              | Krypton                                                        |
| Max             | Maximum                                                        |
| MIDC            | Maharashtra Industrial Development Corporation                 |
| Min             | Minimum                                                        |
| MPCB            | Maharashtra Pollution Control Board                            |
| MVD             | Motor Vehicle Department                                       |
| N 2             | Nitrogen                                                       |
| NAAQM           | National Ambient A ir Quality Monitoring                       |
| NAMP            | National Air Monitoring Program                                |
| Ne              | Neon                                                           |
| NEERI           | National Environmental Engineering Research Institute          |
| NGP             | Nagpur                                                         |
| NHK             | Nashik                                                         |





#### Air Quality Status of Mahara618tila

| NOX               | Oxides of Nitrogen                            |  |  |
|-------------------|-----------------------------------------------|--|--|
| NVM               | Navi Mumbai                                   |  |  |
| 02                | Oxygen                                        |  |  |
| Оз                | Ozone                                         |  |  |
| Pb                | Lead                                          |  |  |
| PM                | Particulate Matter                            |  |  |
| PM10              | Particulate Matter less than 10 microns       |  |  |
| PM <sub>2.5</sub> | Particulate Matter less than 2.5 microns      |  |  |
| PUN               | Pune                                          |  |  |
| RO                | Regional Office                               |  |  |
| RGD               | Raigad                                        |  |  |
| RSPM              | Respirable Suspended Particulate Matter       |  |  |
| SAMP              | State Air Monitoring Program                  |  |  |
| RSPM              | Sulphur dioxide                               |  |  |
| SPM               | Suspended Partculate Matter                   |  |  |
| TERI              | The Energy and Resources Institute            |  |  |
| TNA               | Thane                                         |  |  |
| TTC               | Trans Thane Creek                             |  |  |
| USEPA             | United States Environmental Protection Agency |  |  |
| VOCs              | Volatile Organic Compounds                    |  |  |
| g/m³              | Micrograms per cubic meter                    |  |  |



# List of Figures

| Figure No. 1: Occurrence of AQI classes for composite AQ across areas of Maharashtra (201314)                          |   |
|------------------------------------------------------------------------------------------------------------------------|---|
| Figure No. 2: Composition of natural air                                                                               |   |
| Figure No. 3: Number of active AAQMS in Maharashtra in respective financial year 11                                    |   |
| Figure No. 4: Boundaries and tally of AAQMS in each RO of MPCB201314)                                                  |   |
| Figure No. 5: Molecular formula, sources and harmful impacts of Sulphur dioxide 15                                     |   |
| Figure No. 6: Trend of annual averge SO2 concentrations across RO's of MP.CB                                           |   |
| Figure No. 7: Parametric values of Sofor AAQMS representing industrial regions (201134)                                |   |
| Figure No. 8: Parametric values of Sofor AAQMS representing residential regions (2013<br>14)                           |   |
| Figure No. 9: Parametric values of Sofor AAQMS representing rural and other areas (2013)<br>14)                        | 3 |
| Figure No. 10: Parametric values of Sofor AAQMS representing commercial areas (20-113)                                 |   |
| Figure No. 11: Molecular formula, sources and harmful impacts of oxides of nitrogen 25                                 |   |
| Figure No. 12: Trend of annual average NOx concentrations across RO's of MP.CB 26                                      |   |
| Figure No. 13: Parametric values of NØfor AAQMS representing industrial regions (2013<br>14)                           |   |
| Figure No. 14: Parametric values of NOx for AAQMS representing residential regions (201<br>14)                         | 3 |
| Figure No. 15: Parametric values of NOx for AAQMS representing rural and other type of areas (201-34)                  |   |
| Figure No. 16: Parametric values of NOx for AAQMS representing commercial regions (201314)                             |   |
| Figure No. 17: Size difference between Plyand PM <sub>10</sub> their sources and harmful impacts of Particulate Matter |   |
| Figure No. 18: Trend of annual average RSPM concentrations across RO's of MP.C.B 36                                    |   |
| Figure No. 19: Parametric values of RSPM for AAQMrepresenting industrial areas (2013<br>14)                            |   |
| Figure No. 20: Parametric values of RSPM for AAQMS representing residential areas (-201<br>14)                         | 3 |
| Figure No. 21: Parametric values of RSPM for AAQMS representing rural and other areas (201314)                         |   |
| Figure No. 22: Parametric values of RSPM for AAQMS representing commercial area\$3(20) 14)                             | ) |
| Figure No. 23: Carbon monoxide concentrations at Bandra, Pune and Solapur (2041).3 45                                  |   |





| Figure No. 24: Ozone concentrations at Bandra, Pune and Solapur (20-11-23)                          | 46 |
|-----------------------------------------------------------------------------------------------------|----|
| Figure No. 25: Health advisories for various range of Air Quality Indices and respecti colour codes |    |
| Figure No. 26: RO wise percentage occurrence of AQI classes for composite AQ in Maharashtra (20134) | 53 |
| Figure No. 27: Type wise percentage occurrence of AQI classes forposite AQ in Maharashtra (20134)   | 54 |
| Figure No. 28: Percentage occurrence of AQI classes for RSPM AQ parameter in Maharashtra (20134)    | 55 |
| Figure No. 29: Percentage occurrence of AQI classes for MQ parameter in Maharash (201314)           |    |
| Figure No. 30: Percentage occurrence of AQI classes for ASSO parameter in Maharæhtr (201314)        |    |



#### List of Tables

| Table No. 1: Major air pollutants, their sources and their effects on humans                   |
|------------------------------------------------------------------------------------------------|
| Table No. 2: MPCB RO wise tally of active AAQMS (2013)                                         |
| Table No. 3: Data for S@recordedat AAQMS representing industrial areas (201134) 19             |
| Table No. 4: Data for SO <sup>2</sup> corded at AAQMS representing residential areas (2013) 21 |
| Table No. 5: Data for SOr2cordedat AAQMS representing rural and otherreas (201-34)23           |
| Table No. 6: Data for S@recordedat AAQMS representing rural and other areas (201143)24         |
| Table No. 7: Datafor NOx recorded at AAQMS representing Industrial areas (201134) 29           |
| Table No. 8: Data for NQrecorded at AAQMS representing residential areas (2013) 31             |
| Table No. 9: Data for NQ recordedat AAQMS representing rural and other type of areas (201314)  |
| Table No. 10: Data for N@recorded at AAQMS representing commercial areas (201-34)34            |
| Table No. 11: Data for RSPM recorded at AAQMS representing industrial areas (2104)339          |
| Table No. 12: Datafor RSPM recorded at AAQMS representing residential areas (204)341           |
| Table No. 13: Data foRSPM recordedatAAQMS representing rural and other types of areas (201-34) |
| Table No. 14: Data foRSPM recorded AAQMS representing commercial areas (2013)                  |
| Table No. 15: Subindex and breakpoint pollutant concentration for Indian Air Quality Index     |





# Executive Summary

Air pollution has been one of the major factors affecting the environment with the advent of industrialization and urbanization. Anthropogenic activities like combust of fossil fuels, construction, mining, agriculture and so on are attributed to be the major sources for air pollution. Globally, motor vehicle emissions are known to be one of the leading sources of increasing air pollution, while the major point sources for air pollution includechemical plants, coal-fired power plants oil refineries petrochemical plants, use of incinerators, metal production factories, plastic factories and other with the major pollution directly impacts humans and other life forms, there is a dire need to keep a watch on the air pollution levels and take preactive initiatives to curb the same.

As per Census of India 2011he state of U \ U f U g \ h f U \ U WWc i b h g Z c f a c f Y urban population and contributes more than 15% to the c i b shindurs the output (World Bank). Maharashtra state has the highest number of registered lee hand also consumes the maximum amount of fossil fuels in the country (Indian Petroleum & Natural Gas Statistics 201213). Combustion of fossil fuels like coal, petrol, diesel and so on to meet the energy demands for electricity generation and vehicular ovement are considered the major reasons for air pollution. This scenario Maharashtra state needs the pollution levels and MPCB (Maharashtra Pollution Control Board) has been taking action oriented initiatives to monitor, regulat mitigate and reduce the emissions since the implementation of the Air act in 1981 in the state.

MPCB has installed various Ambient Air Quality Monitoring Stations (AAQMS) across the state under the AMP (National Air Monitoring Program) and SAMP (StateAir Monitoring Program) to regularly monitor the ambient air qualityAs on March 204 there were 2 active AAQMS in Maharashtra under NAMP (62, SAMP (4) and Continuous AAQMS (CAAQMS) (6). Apart from these there are fewmore AAQMS under NAMP, which are regulated and monitored by NEERI (National Environmental Engineering Research Institute). SØ (Sulphur Dioxide), NO  $_{\times}$  (Oxides of Nitrogen) and RSPM (Respirable Suspended Particulate Matter) are monitored across all the AAQMS. Other air pollutants like CO (Carbon Monoxide), Ozone, Benzene, Toluene and Xylene were monitored at 2 CAAQMS locations namely Bandra and Pune while only CO andOzone weremonitored at Solapur CAAQMS.

This report also presents an illustrative compilation of the daily, monthly and antrulata recorded by the AAQMS in Maharashtra for the SOOx and RSPM levels in the year 2013 14. A special section on region (MPCB regional office jurisdiction) wise transfer been presented for the major pollutants illustrate thetrend for the air quality in the state. Further a comprehensive comparison for all the AAQMS at a glance, so as to have a glimpse of the overall performance of the areas in terms of the quality of air, the AQI (Air Quality Index) has been developed and presented in the repfort the year 20134.

<sup>&</sup>lt;sup>1</sup> Government of India, Ministry of Petroleum & Natural Ga<u>sndian Petroleum & Natural Gas Statistic</u> 2012

<sup>13),</sup> Table V5-Statewise Consumption of Major Peoleum Products During 20123 (Prov), pps 7-80

#### Sulphurì dioxide

The SO<sub>2</sub> concentrations in Maharashtra have been below the annual standard (NAAQS 2009) across all the regions for the past few years. However, the Kalyan region which comprises of industrial areas like Dombivali, Ambernath, Baldapur and so on have recorded the highest SO<sub>2</sub> concentrations as compared to any other region in Maharashtra. In the year120<sup>7</sup>0<sup>3</sup>mr out of nine AAQMS representing areas of Kalyan RO were amongst the top five regions (Table No. 1) which recorded highest annual concentrations for<sub>2</sub>.SO

The industrial area of Nanded, is one of the most severely affected  $a_{1}y_{e}a_{5}O_{2}$  pollution and recorded an average SQ concentration of  $4g/m^{3}$  in 201314. The 98 percentile readings in Dombivali MIDC area ranged between  $9310 \mu g/m^{3}$  indicating that at certain days the area violated the daily standards ( $80\mu g^{3}/m$  In terms of AQI for SQ concentrations the above regions recorded moderate aquality for 5 to 8 percent of the observations.

| MPCB RO    | Region     | Station name          | SO₂( g/m³)<br>(Annual standard 50 g/m³) |
|------------|------------|-----------------------|-----------------------------------------|
| Aurangabad | Nanded     | Industrial Area CIDCO | 48                                      |
| Kalyan     | Dombivali  | Dombivali             | 35                                      |
| Kalyan     | Badlapur   | Badlapur - BIWA House | 35                                      |
| Kalyan     | Ulhasnagar | Powai Chowk           | 33                                      |
| Kalyan     | Dombivali  | MIDC Office Dombivali | 32                                      |

Table No. 1: Top five AAQMS which recorded highest annual average SO<sub>2</sub> concentration(2013) 4)

#### Oxides of Nitrogen

As compared to SQ concentrations, NOx concentrations exdeed the annual standard (40g/m<sup>3</sup>), at more than 25 locations while at 6 locatibesannual observations were very close (3840 g/m<sup>3</sup>) to the annual standard

The AAQMS at Sion (Mumbai) recorded the highest annual concentrations of about 106 g/m<sup>3</sup>, more than 2.5 times the annual NOxtandard This AAQMS has consistently violated the NOx standards for more than past108 years. Similarly the monitoring at Bandra (Mumbai) has also been exceeding the NOx annual standards for the pastyEars. Vehicular emissions coupled with traffic orgestion and slow moving traffic could be attributed to igh NOx concentrations in Mumbai city.

The Kalyan region recorded highNOx concentrations, with 5out of 9 AAQMS in Kalyan RO exceeding the annual NOx concentrations Table No. 2). AAQMS representing industrial regions of Dombivali, Ambernath and Badlapur have consistently recorded higher NOx concentrations in the past few years

Similarly all the AAQMS in Navi -Mumbai recorded the NOx levels in the range of 3 5 41 g/m<sup>3</sup>, indicating NOx levels above the acceptable standard in Navi MumbaAn increasing trend for NOx concentrations has been recorded in Kolhapur city and in the year 201314 the annual concentrations were recorded to bg/46<sup>3</sup>.

The top tenAAQMS which exceeded the annual standards for NOx concentrations have been enlisted below in Table No. 2





| MPCB RO     | Region      | Station name          | NO <sub>x</sub> ( g/m³)<br>(Annual standard 40 g/m³) |
|-------------|-------------|-----------------------|------------------------------------------------------|
| Mumbai      | Mumbai      | Sion                  | 108                                                  |
| Pune        | Pune        | Karve Road - CAAQMS   | 70                                                   |
| Kalyan      | Dombivali   | Dombivali             | 66                                                   |
| Kalyan      | Ambernath   | Ambernath             | 64                                                   |
| Kalyan      | Dombivali   | MIDC Office Dombivali | 62                                                   |
| Kalyan      | Ulhasnagar  | Powai Chowk           | 58                                                   |
| Navi Mumbai | Navi Mumbai | A iroli               | 53                                                   |
| Mumbai      | Mumbai      | Bandra                | 49                                                   |
| Kalyan      | Badlapur    | Badlapur - BIWA House | 49                                                   |
| Kolhapur    | Kolhapur    | Ruikar Trust          | 48                                                   |

Table No. 2: Top ten AAQMS which recorded highest annual average NO<sub>x</sub> concentration(201314)

#### Particulate Matter (PM)

High concentration of Particulate Matter (PM) across all the regions has always been a concern in the state. The emissi from various industries involved in activities like cement manufacturing, quarrying activities, power plants and so on, coupled with increasing construction activitiestraffic movementand so on increases the dispersion of RSPM (Respirable Suspended Paticulate Matter) in the air. In the year 3204 all but 2 AAQMS recorded annual RSPM concentrations which violated the annual standard (60/m<sup>3</sup>). Navi Mumbai and Chandrapur are the two severely affected regions of the state with high RSPM concentrations

In Navi Mumbai the areas of Panvel, Taloja and Mahape which arevery close to each other were among the top 5 AAQMS which recorded highest RSPM concentrat (Totals Ie No. 3). There are various quarry sites in the vicinity anto the vicinity anto be attributed to high RSPM concentrations in this region.

Air quality in the Chandrapur area is the most deterioratied terms of RSPM concentrations with three AAQMS of the region in the list oftop ten AAQMS which recorded the highest annual RSPM concentrations in the state. The RSPM levels at the dali MIDC area (195 g/m<sup>3</sup>), Ghuggus (174 g/m<sup>3</sup>), and Rajura (145 g/m<sup>3</sup>) violated the annual standard by more than 3 times. The region is highly influenced with activities like mining, cement manufacturing and presence of thermal power plantwhich could be the main reason for high RSPM levels in the area.

The Amravati and Aurangabad regions which were relatively clean for \$Qand NO<sub>x</sub> concentrations were also found to violate the RSPM annual standatdie year 20134.





| MPCB RO     | Region      | Station name                           | RSPM ( g/m³)<br>(A nnual standard 60g/m ³) |
|-------------|-------------|----------------------------------------|--------------------------------------------|
| Raigad      | Panvel      | Panvel-Water Supply Plant              | 203                                        |
| Chandrapur  | Chandrapur  | Tadali MIDC                            | 195                                        |
| Navi Mumbai | Taloja      | Taloja - MIDC Building                 | 187                                        |
| Navi Mumbai | Navi Mumbai | Mahape, MPCB-Nirmal Bhavan             | 182                                        |
| Chandrapur  | Chandrapur  | Ghuggus                                | 174                                        |
| Aurangabad  | Jalna       | Jalna-Krishnadhan seeds Ltd            | 150                                        |
| Amravati    | Akola       | Akola -College of Engg &<br>Technology | 149                                        |
| Chandrapur  | Chandrapur  | Rajura                                 | 145                                        |
| Kolhapur    | Kolhapur    | Ruikar Trust                           | 141                                        |
| Amravati    | Akola       | MIDC Water Works-Akola                 | 136                                        |

Table No. 3: Top ten AAQMS which recorded highest annual average RSPM concentration(2013 14)

#### Carbon monoxide

Partial oxidation of carborcontaining compounds leads to production of CO (Carbon monoxide) which is highly toxic to humans and animals at higher concentrations. In the year 201314, CO was monitored the CAAQMS in Bandra, Pune and Solapur areas. The Pune region consistently exceeded the 8 hour standard (2mg/m3) for 100percent of the observations, while the Bandra and Solapur region violated the same for 52.3 and 7percent of the observations respectively. In the winter season the Bandra region exceeded the eight hour standards consistently and also a peak was observed in late August. Unusually high levels of CO have been observed in Pune in contrast to the previous two years. Emissions from vehicles and increasing usage of vehicles in Pune could be attributed to highls@vf

#### Ozone

O<sub>3</sub>(Ozone) is a secondary pollutant, formed when NOx and VOCs undergo a photochemical reaction in the atmosphere. People who are active outdoors, especially the summer and more vulnerable to its harmful impact  $\Omega_3$  levels were recorded to be high in Mumbai (Bandra region) especially in the summer and monsoon months. In the year 2041 3the Bandra region violated the Q standard for more than 30percent of the tobservations recorded at that AAQMS. The peak Qconcentrations (3374g/m<sup>3</sup>) were recorded in the month of August. The eason for slightly higher ozone condition in Mumbai could be attributed to the prevailing weather conditions attribute complex chemistry of Ozone formation, requiring hydrocarbons and nitrogen oxides in presence of sunlighthe Pune and Solapur areas recorded Qpollution under control as the exceedence was recorded for merely 1.4 and 0.1 percent of the readings respectively.





#### Benzene

Benzene (CaH 6) is a colourless sweet smelling liquid and is generated whenever cantion materials undergo incomplete combustion such as aromatic compounds like tobacco, furniture wax, glue paints and so on. Benzene pollution was recorded at 2 CAAQMS, Bandra and Pune The annual average benzene concentrations were recorded to be 1.3 and 151.3 g/m<sup>3</sup> respectively. The annual average standard for benzene has been set as for 3 by CPCB, indicating that the benzene pollution at Pune is of major concern. Upon segregating the data for eight hour intervals, betcomes interesting to note that high Benzene in Pune was recorded during the day time (8am to 4pm) sampling. The evening (4pm to 12am) and night (12am to 8am) sampling recorded average of about 36ga/md<sup>3</sup>1 respectively.

#### Air Quality Indexing

AQI (Air Quality Index) has been devised to convey thinformation on outdoor air quality in the easiest possible way which could be understoodt by general public. An AQI of 100 or below indicates attainment of National Ambient Air Quality Standards. Higher value of AQI indicates high level of pollution. A corresponding colour code has been attributed f U b [] b [Z f c a D; from the sponding to the air Up to the full Upon determining h \ Y T c a d c g ] h Y D 5 E = Z c f h \ Y U f Y U g D ] b A U \ U f U g \ h f U quality were found to be Akta, Jalgaon, Panvel, Taloja, Jalna, Kolhapur, Mumbai and Navi Mumbai. However, since an area wise analysis may include a bias for a region depending upon the number of AAQMS and the number of observations recorded in that area, an elaborate section on the QI for the year 20134 is presented and discussed in the report.

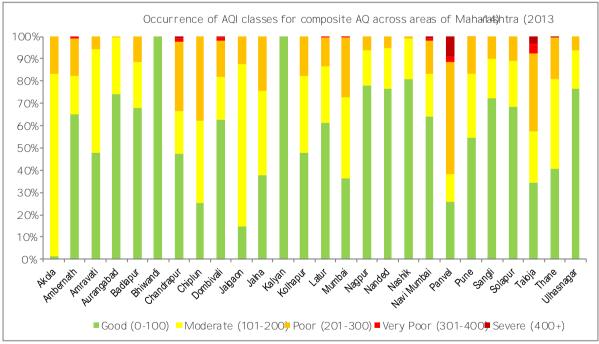
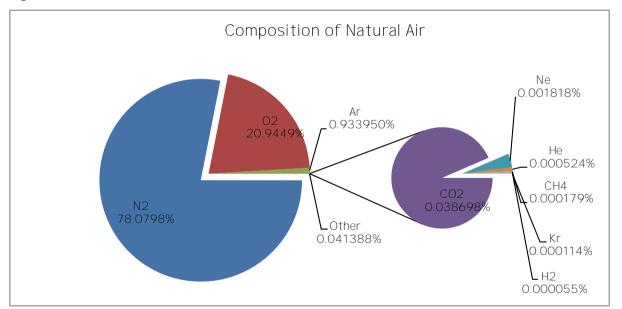
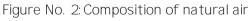



Figure No. 1: Occurrence of AQI classes for composite AQ across areas of Maharashtra (204)3







# Introduction

Urbanization is a process of relative growth  $U \cap Wc$  i b h f m  $\tilde{N}$  g i f V U b d c d i U h ] by a rapid increase in the economic, political, and cultural importance of cities relative to rural areas. While urbanization is characteristic of nearly all developing countries, levels of urbanization vary quite significantly by region. Transformation of villages to towns and to cities, and then cities into metropolitan regions an ongoing process that is highly resource intensive.

The level of urbanization in India has also increased significantly from 27.81% 2001 to 31.16% in 20% and for the first time since independence, tlast decade registered an absolute increase in urban populationmore than in rural population. On one hand, the escalating demands and limited supply for resources like water and regge are creating a severe resource crunch and on the other hand, anthropogenic activities inductees on the ecosystem due to release of pollutantwohich leads to undesirable pollution in the environment. Pollution is defined as the introduction of cantinants into the natural environment that causes adverse change to obberwise normal constituents of natural resources like water, land and air.

 $H \setminus Y = 9 \cup fh \setminus \tilde{N}g = 0 \cup hacgd \setminus Y fY = ]g = 0 = U = U = U = Y f = cZ = [UgYg = gif gravitational power. This mixture of gases which envelopes the earth is commonly known as Air. The composition of pure air consists majorly of Nitrogen and Oxygen. Other gases like Argon, Carbon-di-oxide, Methane and so on are present in trace amounts. A representative piY = W \ Ufh = X Y d ] Wh ] b [ = h \ Y = W c a d c g ] h ] c b = cZ = b U h i f U = Figure No. 2.$ 





Data Source: Hand book of Air Pollution, PHS PublicationAP -44 (PB 19047), 1968 [40]

Note: Ar. Argon; CH: Methane, C@ Carbondi-oxide; H: Hydrogen; He: Helium; Kr: Krypton; Nitrogen; Ne: Neon; @ Oxygen.

<sup>&</sup>lt;sup>2</sup>http://censusindia.gov.in/2011-prov-results/paper2/data\_files/india/Rural\_Urban\_2011.pdf

#### Air Pollution

A lot of undesired elements have beenadded to  $h \setminus Y$  b U h i f U composition b U ] f especially due to anthropogenic activities involving combustion of fossil fulleds wer plants, industries automobiles, construction activities and so emit tonnes of pollutants every day, thereby deteriorating the air quality and exposing citizento great health risk an air pollutant has been define as any solid liquid or gaseous substance (including noise) present in the atmosphere in such concentration as may be or tend to be injurious to human beings or other living creatures or plas or property or environment. This change in the composition of pure air is termed as Air Pollution. The source of air pollutants could be both natural as well as anthropogenic he 6 major air pollutants identified by USEPA (United States Environmental Proteion Agency), their anthropogenic source and their effects on human health, is presented below about the No. 4.

| Pollutants                          | Sources                                                                            | Effects                                                                                                                                                            |
|-------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nitrogen dioxide<br>(NOx)           | Combustion processes<br>(heating, power generation,<br>and vehicles)               | <ul> <li>Bronchitis in asthmatic children.</li> <li>Reduced lung function</li> </ul>                                                                               |
| Particulate Matter<br>(PM2.5, PM10) | Vehicles, industrial sources,<br>domestic fuel burning, road<br>dust resuspension, | <ul> <li>Cardiovascular and respiratory<br/>diseases,</li> <li>Lung cancer,</li> <li>ALRI (Acute Lower Respiratory<br/>Infections)</li> </ul>                      |
| Carbon monoxide<br>(CO)             | Incomplete fuel combustion<br>(as in motor vehicles)                               | <ul> <li>Reduces the oxygen carrying capacity of blood,</li> <li>Causes headachesnausea, and dizziness</li> <li>Can lead to death at high levels</li> </ul>        |
| Sulphur dioxide<br>(RSPM)           | Burning of sulphur-<br>containing fuels for heating,<br>power & vehicles.          | <ul> <li>Affects respiratory system and<br/>lung function. Coughing, mucus<br/>secretion, asthma and chronic<br/>bronchitis.</li> <li>Causes acid rain.</li> </ul> |
| Lead<br>(Pb)                        | Petrol and industry (such as smelting, and paint works).                           | <ul> <li>Affects brain developmentn<br/>children,</li> <li>At very high doses leads to<br/>poisoning,</li> <li>May lead to brain and organ<br/>damage.</li> </ul>  |
| Ozone<br>(O3) Tropospheric          | Formed by the reaction of NO $_{\rm X}$ and (VOCs) in sunlight                     | <ul> <li>Breathing problems, asthma,<br/>reduced lung function.</li> </ul>                                                                                         |

Table No. 4: Major air pollutants, their sources and their effects on humans





# Challenges and Initiatives in India

As India is developing, the problems associated with pollution are also increasing at a rapid rate. Rapidly growing Indian cities are suffering fm some of the worst air quality problems in the world. The major sources responsible for air pollution in India are fuel adulteration emissions from power plants, transport section dustrial emissions, combustion offuel wood & biomass, construction advities, and traffic congestion

Since the 1970s any initiatives have been taken to tackle the issue of air pollution including environmental legislations. To counter the problems associated with air pollution of former of India enacted the Air (pevention and control pollution) Act 1981 the act prescribes to combat air pollution by prohibiting the use of polluting fuels and substances as well as appliances that give rise to air pollution. Under this Act, the central government is empowered to take measures necessary to protect and improve the quality of the environment by setting standards for emissions and discharges; regulating the location of industries; management of hazardous wastes, and protection of public health and welfare.

# Central Pollution Control Board

The CPCB (Central Pollution Control Boar), a statutory organisation, was constituted in September, 1974 under the Water (Prevention and Control of Pollution) Act, 1974. Further, CPCB was entrusted with the powers and functions under Ath Prevention and Control of Pollution) Act, 1981The principal function of the CPCB under the Air (Prevention and Control of Pollution) Act, 1981s to improve the quality of air and to prevent, control or abate air pollution in the country.

CPCB initiatedNAAQM (National Ambient Air Quality Monitoring) programme in the year 1984. Subsequent, Jexpanding the network to have representation of various regions in the country, various stations under theorogramme were established nationwideThe program was subsequently renamed asNAMP (National Air Quality Monitoring Programme). In the year 2010/1 CPCB was executing NAMP for generating air quality database at 456 air quality motoring stations throughout the nation covering 190 cities in 26 States in 26 States further, CPCB under the Air (Prevention and Control) Achas set the NAAQS (National Ambient Air Quality Standards) with the following objectives:

- To indicate the levels of air quality necessary with an adequate margin of safety to protect publichealth, vegetation and property
- To assist in establishing priorities for abatemand control of pollutant level
- To provide a uniform yardstick for assessignair quality at national level
- < To indicate the need and extent to femonitoring programme

The revised National Ambient Air Quality Standardswere notified on 18 November 2009. A copy of the Gazette is closed as Appendix A.

<sup>&</sup>lt;sup>3</sup> "Urban Air Pollution, Catching gasoline and diesel adulteration. The World Bank. 2002 <sup>4</sup> CPCB, 201112<u>National Ambient Air Quality Status & Trends In In20010</u>Chapter 1 Introduction, pg 3





#### Maharashtra Pollution Control Board

The MaharashtraState government in 1981 adopted the Water (Prevention and Cooffro Pollution) Act 1974 and underthis MPCB (Maharashtra Pollution Control Board)was established in the year 1981.

MPCB has established 12 regional offices across the state to check and regulate the pollution level with necessary control measures MPCB implements a range of environmental legislation in the state and functions under the administrative control of Environment Department, Government of Maharashtra.

The main functions of MPCB are:

- To plan comprehensive programs for the prevention, control orbit of pollution and secure executions thereof,
- To collect and disseminate information relating to pollution and the prevention, control or abatement thereof,
- To inspect sewage or trade effluent treatment and disposal facilities, and air pollution control systems and to review plans, specification or any other data relating to the treatment plants, disposal systems and air pollution control systems in connection with the consent granted,
- To support and encourage developments in the fields of pollutino control, waste recycle reuse, ecoriendly practices etc.
- To educate and guide entrepreneurs in improving the environment by suggesting appropriate pollution control technologies and techniques
- To create public awareness about clean and healthy enviroement and attendingot public complaints regarding pollution.

The Air (Prevention and Control of Pollution) Act 1981 was adoptedy the state of Maharashtra in1983 and the MPCB is functioning as the tateboard under section 5 of ish Act. Following which MPCB has taken many initiatives to control, prevent and monitor air quality in the state of Maharashtra.

Being a highly industrialised, populated and urbanized state, Maharashtra has numerous air pollution sources, which has resulted in the deterioration of air quality in many cities. The state has a wide range of major industries involved in polluting activities like power plants, pharmaceuticals, petroleum, and manufacturing offertilizers. Vehicular growth, construction activities, quarry sites and so horve augmented the deterioration of the air quality.

Hence, to keep a constant vigilance on the status of the air quality in the industrial influenced areas like Dombivali, Ambernath, Chandrapur and the exposure to the population in residential areas, MPB has installed air quality monitoring stations in Maharashtra. The following section presents the highlights of the monitoring and the air quality recorded in the year 20-114.





# Air Quality Monitoring in Maharashtra

Ambient air quality monitoring netwok is designed to get spatial and temporal variation of ambient air concentrations or a wide range of pollutants that are considered relevant for evolving a strategic management plan. Monitoring locations are selected to represent different land use categories like kerbside, residential, industrial, commercial so on to capture air quality levels under different activity profiles have a continuous vigilance of the air quality in the different parts of the state MPCB has installed various AAQMS (Ambient Air Quality Monitoring Stations) in various regions of the state. The following section provides an overview of the status of AAQM (Ambient Air Quality Monitoring) in the year 203-14.

#### Monitoring Network

AAQMS are added periodically to expand the network of monitoring stations. However due to operating challenges like maintenance issues, shortage of manpower and change of location, some monitoring stations are closed temporarily and the hence datage be unavailable for a particular station for that sept of time In the year 203114, therewere 72 active AAQMS in Maharashtra under CAAQMS (6), NAMP (62) and SAMP (4). Apart from these there are 3 more AAQMS under NAMP, which are regulated and monitored by NEERI (National Environmental Engineering Research Institute)As per data availability each year the corresponding tally of AAQMS is presented below in Figure No. 3.

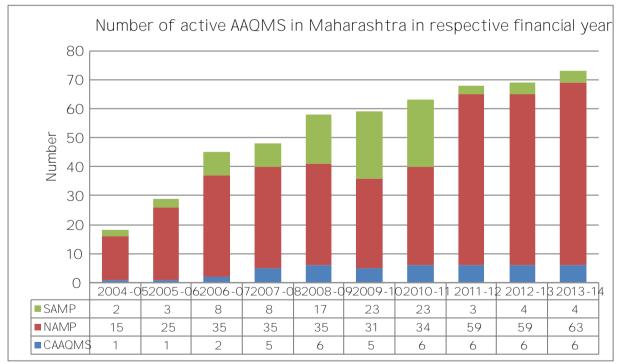



Figure No. 3: Number of active AAQMS in Maharashtra in respective financial year

Data Source: MPCB, 2013

\*Note: DataforWorli, Kalbadevi and ParelAQMS monitored by NEER has been considerseparatel for the analysissaper datarovided by them

Given that Maharashtra has very prominent industrial zones and is one of the highly populated states in the countary quality monitoring becomes essential at these locations. However, owing to the population growth and expansion of the cithes residential areas have now grown so large that they are now located in very close vicifiith eviduatrial belts. Some examples of the same are these dential areas in Navi Mumbai, Dombivali, Ambernath, where the residential zones are very close to the industrial areas the given region there is a mix of various types of monitoring isotras representing various type of areas MPCB-RO (Regional Office) wise tally of AAQMS operating in the year 20-114 is presented inTable No. 5. The detailed list of the active stations is presented in Anthera this report. The jurisdiction boundaries and the tally of the AAQMS in each RO are presented inFigure No. 4.

| MPCB RO     | Commercial | Industrial | Residential | Rural and other areas | Total |
|-------------|------------|------------|-------------|-----------------------|-------|
| Amravati    | 1          | 2          | 2           | 1                     | 6     |
| Aurangabad  | 1          | 3          | 6           | 1                     | 11    |
| Chandrapur  |            | 3          | 3           |                       | 6     |
| Kalyan      | 2          | 2          |             | 5#                    | 9     |
| Kolhapur    |            | 2          | 4           | 2                     | 8     |
| Mumbai      |            |            | 2           |                       | 2     |
| Nagpur      |            | 1          | 2           | 1                     | 4     |
| Nashik      |            | 2          | 5           |                       | 7     |
| Navi Mumbai |            | 3          | 3           | 1                     | 7     |
| Pune        |            | 1          | 6           | 1                     | 8     |
| Raigad      |            |            | 1           |                       | 1     |
| Thane       |            | 1          | 1           | 1                     | 3     |
| Grand Total | 4          | 20         | 35          | 13                    | 72    |

Table No. 5: MPCB RO wise tally of active AAQMS (2013-14)

Data Source: MPCB, 204

\*Note: Data for WorlKalbadevi and Par&AQMS monitored by NEERhave not been included in this tally # includesAAQMS representing sensitive area monitoring at IGM Hospital Bhiwandi





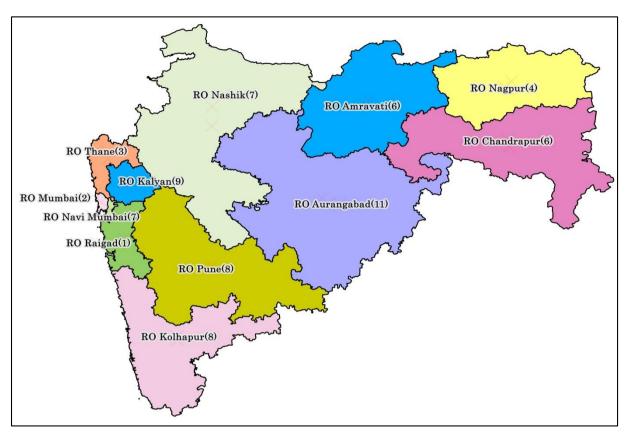



Figure No. 4: Boundaries and tally of AAQMS in each RO of MPCB (2013-14)

# Pollutants Monitored

RSPM (Sulphur Dioxide), NO  $_{\rm X}$  (Nitrogen Oxides) and RSPM (Respirable Suspended Particulate Matter) regularly and consistently monotories all the monitoring sites in Maharashtra under NAMP, SAMP and also at the CAAQMSSPM (Suspended Particulate Matter) are bigger than coarse particles, ytsettle down fast and do not reach the respiratory tract and therefore they have lessease effect on healthAs a result the standard for SPM have not been set as per revised NAAQS (2009), Ithough some monitoring stations do record the concentrations of , SPNix has not been considered of the statistical compilation.

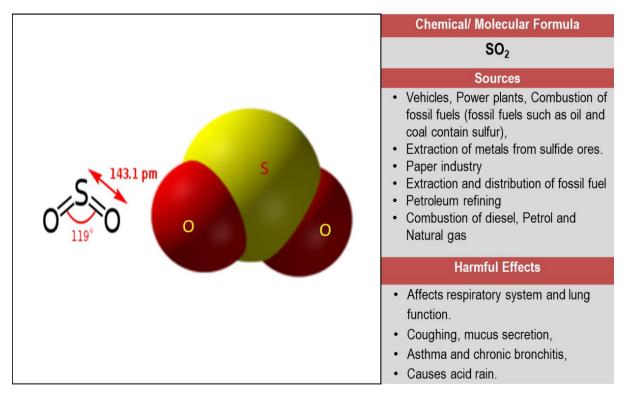
# Air Quality Monito ring Data

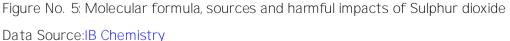
MPCB published the data recorded by all the monitoring sites in Maharashtra on its website. It also presents an interactiveay toselect the time series data for a particular interior station. The data sets recorded at the monitoring stationthe year 20314 have been compiled in this report pollutant wise overview for theair quality recorded at thereas representing residential, industrial, commercial, rural & other areas and sensitive monitoring is presented in the following section.

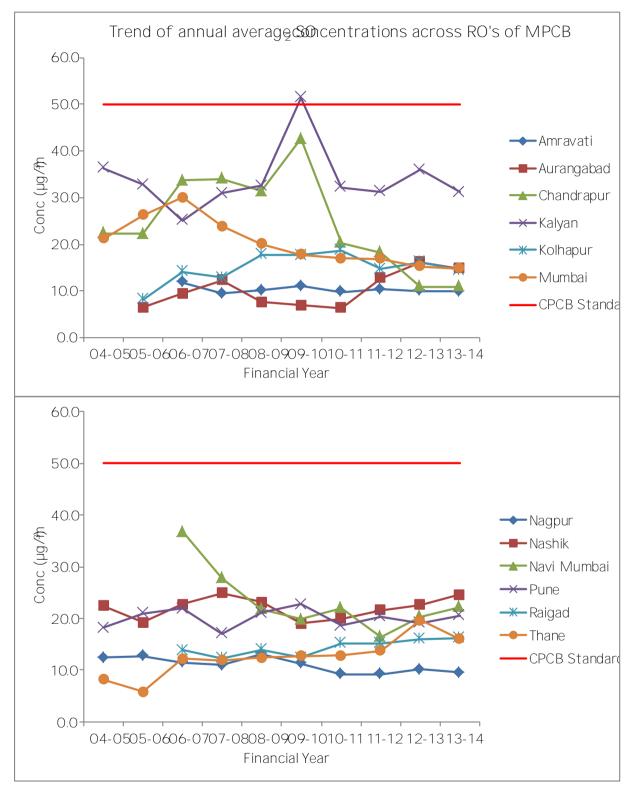
Monitoring station wise annual trend for the recent 5 years and monthly trend for the year 20B-14 have been presented interval  $\hat{I}$  II.

<sup>&</sup>lt;sup>5</sup>CPCB 2012<u>National Ambent Air Quality Status & Trends In India10</u> Chapter 6, Pg 83







# Status of Air Quality


# Sulphur dioxide

Sulphur dioxide (SO<sub>2</sub>) belongs to a f c i d c Z  $\land$  ] [  $\land$  m f Y U Wh ] s of [ U g Y g g i d i f I " = h ] g U Wc c i f Y g g Sulphugr coumpotunds are  $\land$  g  $\circ$  responsible for the major damage to materialised are generally known to accelerate metal corrosion by forming sulphuric acid. The largest sources of O<sub>2</sub> emissions are from fossil fuel combustion at power plants and other industrial facilities Smaller sources of SO<sub>2</sub> emissions include industrial processes such as eact ting metal from ore, and combustion of sulphur containing fuels (diesel) by vehicles. The skeletal tructure sources and impacts on humans is presented in Figure No. 5.

SO<sub>2</sub> is linked with a number of adverse effects on the respiratory system is known to increase the airway resistance, and lung diseaseSulphur oxide in combination with particulate matter and moisture is a potentially serious health hazard and results in increased mortalityAerosols of sulphuric acid and other sulphates have a share 200% in total supended particulate matter in urban air and are responsible for the reduction in visibility.







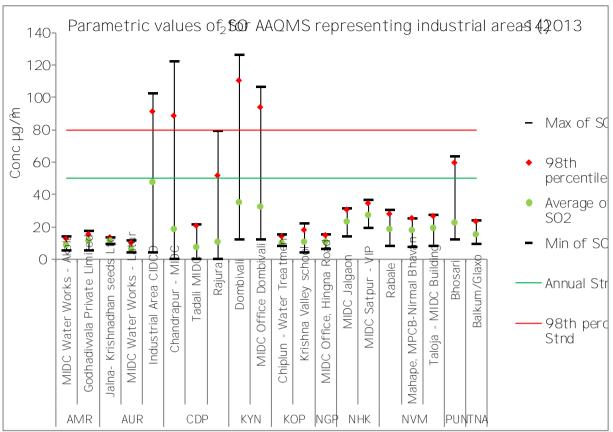
#### Trend of SO<sub>2</sub> Concentrations in the state

Figure No. 6: Trend of annual average SO<sub>2</sub> concentrations across RO's of MPCB



#### Comparison for last few years

The SO<sub>2</sub> concentrations in Maharashtra have been below the annual stan(MAAQS 2009) across all the regionsAs per the trend observed in Figure No. 6, the Kalyan region has consistently recorded relatively high SQC oncentrations compared to otheregions in the state. This region comprises of MIDC areas of Dobrivali, Ambernath, Baldapur and so on. The region has recorded annual average SQL evels just above 3,00/m<sup>3</sup> from the past 5 years. In the year 2009D a peak can be observed when the region exceeded the annual standards for the SQC oncentrations. Although annual concentrations for the region are under control upon doing a station wise analysis, the specifica with higher SQ concentrations which may be influencing the annual average couls hortlisted.


Amravati, Kolhapur, Nagpur and Aurangabad regions are the cleanest for sulphur dioxide pollution. These regions have consistent, yover the period of last to 7 years, recorded annual SO<sub>2</sub> concentrations in the range of -11 \$\overline{14}\$ pig/m<sup>3</sup>. A declining trend in the sulphur dioxide pollution can be observed in MumbaiNavi Mumbai and Chandrapur regions.

Two regions where the SQ concentration shows an increasing treade Thane and Raigad. Both these regions are rapidly getting urbanised and industrialised. Hence, although the SO concentrations are under taken nual standard, appropriate measure should be undertaken to keep the emissions under check in these regions.

The following section presents the status of 260 ncentrations recorded at the active AAQMS representing industrial, residential, commercial and other reas in Maharashtra during the fiscal year 20134.







#### SO<sub>2</sub> concentrations in industrial areas

Figure No. 7: Parametric values of SQ for AAQMS representing industrial regions (201314)

Data Source: MPCB, May 2014

SO<sub>2</sub> concentrations were recorded under annual permissible standards across all the industrial areas which had an active AAQMS in 20134 (Figure No. 7). The MIDC areas of Dombivali and Nanded (Aurangabad RO) recorded the highest SQ concentrations. These regions have consistently recorded higher 0 concentrations on certain days these areas recorded SQ concentrations higher than the daily standards ( $80\mu$ )/mThe  $98^{\circ}$  percentile readings in Dombivai MIDC area ranged between  $93^{\circ}$  110 µg/m<sup>2</sup>. The Chandrapur MIDC area recorded the maximum daily peak of  $122\mu$ g/mthis could be attributed as an outlier since theannual average concentrations ( $18\mu$ g/4) were well within the annual standards of  $50\mu$ g/m<sup>2</sup>.

All the other AAQMS in MIDC areas of Maharashtra recorded SO2 concentrations less than  $35\mu g/m^3$ . Industrial areas in Amravati region were the cleanest in terms of 2 SO concentrations with the maximum recorded Solvels were also under  $15\mu g/m$  Similarly the AAQMS in the MIDC areas of the Kolhapur, Nagpur, Nashik and Navi Mumbai recorded low concentrations of Sourcentrations.





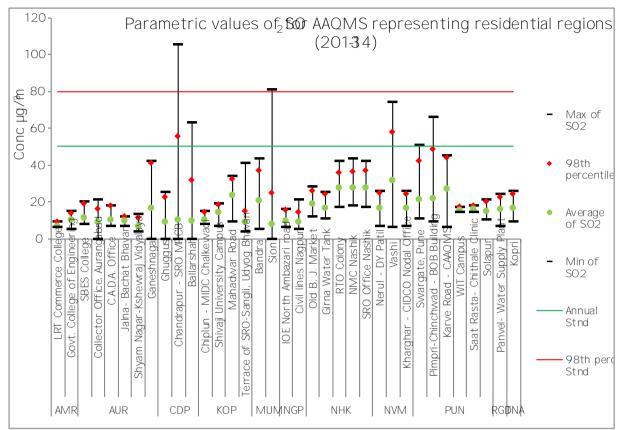

| RO  | Station name                  | Station<br>code | Max<br>of<br>SO <sub>2</sub> | 98th<br>percentile | Average of SO <sub>2</sub> | Min<br>of<br>SO 2 |
|-----|-------------------------------|-----------------|------------------------------|--------------------|----------------------------|-------------------|
|     | CPCB Standard                 |                 | 80                           | 80                 | 50                         | 80                |
| AMR | MIDC Water Works-Akola        | 701             | 14.0                         | 12.7               | 8.6                        | 5.0               |
|     | Godhadiwala Private Limited   | 549             | 17.0                         | 15.1               | 11.4                       | 5.0               |
| AUR | Jalna- Krishnadhan seeds Ltd  | 707             | 13.0                         | 13.0               | 11.3                       | 9.0               |
|     | MIDC Water Works-Latur        | 641             | 11.0                         | 10.0               | 5.7                        | 4.0               |
|     | Industrial Area CIDCO         | 705             | 102.0                        | 90.9               | 47.7                       | 4.0               |
| CDP | Chandrapur - MIDC             | 281             | 122.0                        | 88.4               | 18.3                       | 0.0               |
|     | Tadali MIDC                   | 638             | 21.0                         | 20.3               | 7.1                        | 0.0               |
|     | Rajura                        | 640             | 79.0                         | 51.4               | 10.4                       | 0.0               |
| KYN | Dombivali                     | 265             | 126.0                        | 110.4              | 35.0                       | 12.0              |
|     | MIDC Office Dombivali         | -               | 106.0                        | 93.3               | 32.3                       | 12.0              |
| КОР | Chiplun - Water Treatment     | 490             | 15.0                         | 14.0               | 10.1                       | 8.0               |
|     | Krishna Valley school         | 576             | 22.0                         | 18.0               | 10.7                       | 4.0               |
| NGP | MIDC Office, Hingna Road      | 288             | 15.0                         | 14.3               | 10.4                       | 6.0               |
| NHK | MIDC Jalgaon                  | 646             | 31.0                         | 30.0               | 22.7                       | 14.0              |
|     | MIDC Satpur - VIP             | 269             | 36.0                         | 34.1               | 27.2                       | 19.0              |
| NVM | Rabale                        | 491             | 30.0                         | 27.8               | 18.2                       | 8.0               |
|     | Mahape, MPCB-Nirmal<br>Bhavan | 493             | 25.0                         | 25.0               | 17.8                       | 7.0               |
|     | Taloja - MIDC Building        | 496             | 27.0                         | 26.4               | 18.7                       | 8.0               |
| PUN | Bhosari                       | 312             | 63.0                         | 59.0               | 22.7                       | 12.0              |
| TNA | Balkum/Glaxo                  | -               | 24.0                         | 23.2               | 15.1                       | 9.0               |

Table No. 6: Data for SO<sub>2</sub> recorded at AAQMS representing industrial areas (20B-14)

Data Source: MPCB, 204

Units: µg/m³





#### SO<sub>2</sub> concentrations in residential areas



Data Source: MPCB, May 2014

As seen in Figure No. 8 all the AAQMS representing residential areas of Maharashtra were recorded clean for SQ pollution. Except for a few outliers ta few AAQMS, even the maximum SO<sub>2</sub> levels were under the annual standards ( $fgg/m^3$ ).

All the 5 AAQMS in the Nashik region consistently recorded annual SQ concentration in the range of 1488µg/m<sup>3</sup>. This is more than the average reading for SQ vels recorded in highly urban areas like Mumbai (between 7.7 and 2µg/m<sup>3</sup>) and Pune (between 14 and 21µg/m<sup>3</sup>). Hence, an investigation is recommended to study the region and identify the source of pollution which may be leading to high SQ vels.

The residential areas of AmravatiRaigad, Thane, Nagpur and Aurangabad regions were the cleanest in terms of  $\mathrm{Sp}$ 



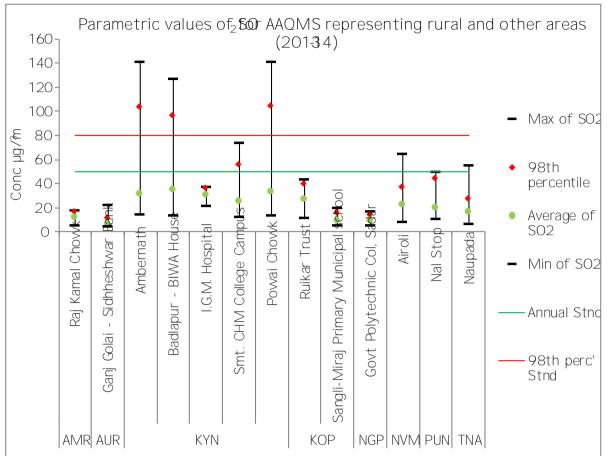

| RO    | Station name                       | Station<br>code | Max<br>of<br>SO2 | 98th<br>percentile | Average<br>of SO2 | Min of<br>SO2 |
|-------|------------------------------------|-----------------|------------------|--------------------|-------------------|---------------|
|       | CPCB Standard                      |                 | 80               | 80                 | 50                | 80            |
| AMR   | LRT Commerce College               | 700             | 9.0              | 9.0                | 7.0               | 6.0           |
| AIVIK | Govt. College of Engineering       | 548             | 15.0             | 13.7               | 10.5              | 5.0           |
|       | SBES College                       | 511             | 20.0             | 19.1               | 11.4              | 0.8           |
|       | Collector Office, Aurangabad       | 512             | 21.0             | 16.1               | 9.3               | 0.0           |
| AUR   | C.A.D.A. Office                    | 513             | 18.0             | 18.0               | 10.5              | 7.0           |
| AUR   | Jalna-Bachat Bhavan                | 706             | 12.0             | 12.0               | 9.7               | 7.0           |
|       | Shyam Nagar-Kshewraj Vidya laya    | 642             | 13.0             | 11.1               | 6.6               | 4.0           |
|       | Ganeshnagar                        | 703             | 42.0             | 41.0               | 16.9              | 0.0           |
|       | Ghuggus                            | 267             | 25.0             | 22.3               | 8.9               | 0.0           |
| CDP   | Chandrapur - SRO MPCB              | 396             | 105.0            | 55.6               | 10.2              | 0.0           |
|       | Ballarshah                         | 639             | 63.0             | 31.9               | 9.8               | 0.0           |
|       | Chiplun - MIDC Chalkewadi          | 489             | 15.0             | 14.0               | 10.2              | 0.8           |
| KOD   | Shivaji University Campus          | 508             | 19.0             | 18.5               | 14.3              | 7.0           |
| КОР   | Mahadwar Road                      | 510             | 34.0             | 32.1               | 23.4              | 9.0           |
|       | Terrace of SRQSangli, Udyog Bhavan | 574             | 41.0             | 14.9               | 8.8               | 4.0           |
|       | Bandra                             | -               | 43.0             | 37.0               | 20.4              | 5.0           |
| MUM   | Sion                               | -               | 81.0             | 24.8               | 7.7               | 0.0           |
| NOD   | IOE North Ambazari road            | 287             | 16.0             | 15.3               | 9.9               | 6.0           |
| NGP   | Civil lines N agpur                | 711             | 21.0             | 14.0               | 9.3               | 5.0           |
|       | Old B. J. Market                   | 644             | 28.0             | 26.0               | 18.8              | 12.0          |
|       | Girna Water Tank                   | 645             | 25.0             | 24.1               | 16.7              | 11.0          |
| NHK   | RTO Colony                         | 259             | 42.0             | 36.0               | 27.5              | 17.0          |
|       | NMC Nashik                         | 280             | 43.0             | 36.4               | 27.5              | 18.0          |
|       | SRO Office Nashik                  | 710             | 42.0             | 37.0               | 27.6              | 17.0          |
|       | Nerul - DY Patil                   | 492             | 26.0             | 24.4               | 16.6              | 7.0           |
| NVM   | Vashi                              | -               | 74.0             | 58.0               | 31.5              | 6.0           |
|       | Kharghar - CIDCO Nodal Office      | 494             | 26.0             | 24.0               | 16.6              | 7.0           |
|       | Swargate, Pune                     | 381             | 51.0             | 42.0               | 21.2              | 11.0          |
|       | Pimpri -Chinchwad - BOB Building   | 708             | 66.0             | 48.4               | 22.1              | 9.0           |
| DUN   | Karve Road - CAAQMS                | -               | 45.0             | 44.0               | 26.7              | 6.0           |
| PUN   | WIT Campus                         | 299             | 17.0             | 17.0               | 15.4              | 14.0          |
|       | Saat RastaChithale Clinic          | 300             | 18.0             | 18.0               | 15.9              | 14.0          |
|       | Solapur                            | -               | 21.0             | 19.9               | 14.9              | 10.0          |
| RGD   | Panvel-Water Supply Plant          | 495             | 24.0             | 22.5               | 16.2              | 7.0           |
| TNA   | Kopri                              | 303             | 26.0             | 24.0               | 16.3              | 9.0           |

Table No. 7: Data for SO2recordedatAAQMS representing residential areas(2013-14)

Data Source: MPCB, 204







## SO<sub>2</sub> concentrations in rural and other areas



#### Data Source: MPCB, May 2014

\*Note: I.G.M Hospital is categorized as a sensiple of monitoring zone by MPCB

All the AAQMS representing some rural and other type of areas in Maharashtra recorded the annual SQ well under the annual standards ( $50/m^3$ ). The maximum daily peak was observed at three AAQMS, namely Ambernath, Baldapur and Ulhasnagar (PowaiChowk) in the Kalyan region. These AAQMS recorded 24 hours readings (maximum and 198 percentile) between 96 to 14Q/m<sup>3</sup> indicating that at certain days these areas record SO2 concentrations above the daily standards ( $80/m^3$ ).

The observations for SQ concentration recorded athet AAQMS at Bhiwandi (I.G.M hospital) ranged between 21 to  $\mu$ g/m<sup>3</sup> and the annual average exceeded the annual standards (2 $\mu$ g/m<sup>3</sup>) set for sensitive zones.

Amrava ti, Kolhapur and Nagpur regions were amongst<br/>the cleanest in terms of  $_{2}\!\!SO$  pollution.

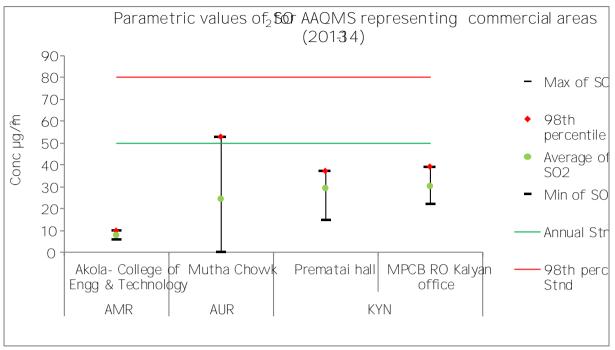




| RO  | Station name                             | Station<br>code | Max of SO <sub>2</sub> | 98th<br>percentil<br>e | Average of SO <sub>2</sub> | Min of SO 2 |
|-----|------------------------------------------|-----------------|------------------------|------------------------|----------------------------|-------------|
|     | CPCB Standard                            |                 | 80                     | 80                     | 50                         | 80          |
| AMR | Raj Kamal Chowk                          | 547             | 17.0                   | 16.0                   | 11.8                       | 5.0         |
| AUR | Ganj Golai - Sidhheshwar<br>Bank         | 643             | 22.0                   | 11.1                   | 6.9                        | 4.0         |
|     | Ambernath                                | 445             | 140.0                  | 103.4                  | 31.3                       | 14.0        |
|     | Badlapur - BIWA House                    | 649             | 126.0                  | 96.3                   | 34.6                       | 13.0        |
| KYN | I.G.M. Hospital                          | -               | 37.0                   | 36.0                   | 30.3                       | 21.0        |
|     | Smt. CHM College<br>Campus               | 647             | 73.0                   | 54.9                   | 25.0                       | 12.0        |
|     | Powai Chowk                              | 648             | 140.0                  | 103.6                  | 32.9                       | 13.0        |
|     | Ruikar Trust                             | 509             | 43.0                   | 39.0                   | 27.2                       | 11.0        |
| КОР | Sangli-Miraj Primary<br>Municipal school | 575             | 19.0                   | 15.0                   | 9.3                        | 5.0         |
| NGP | Govt Polytechnic Col,<br>Sadar           | 314             | 16.0                   | 14.0                   | 9.4                        | 5.0         |
| NVM | Airoli                                   | _               | 64.0                   | 37.0                   | 22.4                       | 7.0         |
| PUN | Nal Stop                                 | 379             | 49.0                   | 43.5                   | 19.8                       | 10.0        |
| TNA | Naupada                                  | 304             | 54.0                   | 27.0                   | 16.6                       | 6.0         |

Table No. 8: Data for SO2recordedatAAQMS representing rural and other area (20B-14)

Data Source: MPCB, 204


Units: µg/m³

\*Note: I.G.M Hospital is categorized as a sensitive type of monitoring zonælbdy the CB and ards are 80µg/mand 20µg/mor24 and annual averages.











Air quality monitored in areas representing commercial areas was amongst the cleanest in terms of SØpollution since all of AAQMS recorded annual averaged well below the annual standards. The maximum SQ concentration of  $\frac{1}{90}$ /m<sup>3</sup> was recorded at Mutha Chowk in Aurangabad. The commercial regions in Kalyan (AAQMS at Prematai hall and RO MPCB Kalyan) recorded annual average SQ concentration of around  $\frac{3}{90}$ /m<sup>3</sup>. The Amravati region recorded the best annual statistics for <u>600</u> contrations with all the readings ranging between10 to  $\frac{1}{60}$ /m<sup>3</sup>.

| RO  | Station name                            | Station<br>code | Max of SO <sub>2</sub> | 98th<br>percentile | Average of SO <sub>2</sub> | Min<br>of SO <sub>2</sub> |
|-----|-----------------------------------------|-----------------|------------------------|--------------------|----------------------------|---------------------------|
|     | CPCB Standard                           |                 | 80                     | 80                 | 50                         | 80                        |
| AMR | Akola - College of Engg &<br>Technology | 702             | 10.0                   | 10.0               | 7.8                        | 6.0                       |
| AUR | Mutha Chowk                             | 704             | 53.0                   | 53.0               | 24.6                       | 0.0                       |
|     | Prematai hall                           | -               | 37.0                   | 37.0               | 29.5                       | 15.0                      |
| KYN | MPCB RO Kalyan office                   | _               | 39.0                   | 39.0               | 30.2                       | 22.0                      |

Table No. 9: Data for SO 2 recorded at AAQMS representing rural and other area (203-14)

Data Source: MPCB, 204





# Oxides of Nitrogen

The oxides of nitrogen, NO N itric Oxide) and NO<sub>2</sub> (nitrogen dioxide) aresignificant air pollutants. Neither NO nor NQ causes direct damage to materials; however, &Oeacts with atmospheric moisture form nitric acid, which causeonsiderable corrosion f metal surfaces. NO<sub>2</sub> acts as an acute irritant and is more injurious than NOe skeletal structure, their significant sources and impacts are presented belowignre No. 11.

In the presence of sunlight the oxides of nitrogeact with the unburned hydrocarbons to form photochemical smog which causes damage to plants and loodetrimental to human health. NO<sub>2</sub> is linked with a number of adverse effects on the respiratory systembher it is also known to contribute to the thermation of groundlevel ozone and fine particle pollution.

Oxides of nitrogenare produced from the reaction of nitrogen and oxygenesses in the air during combustion, especially at high temperatures. In areas of high motor vehicle traffic, such as inlarge cities, the amount of nitrogen oxides emitted into the atmosphere as air pollution can be significant.

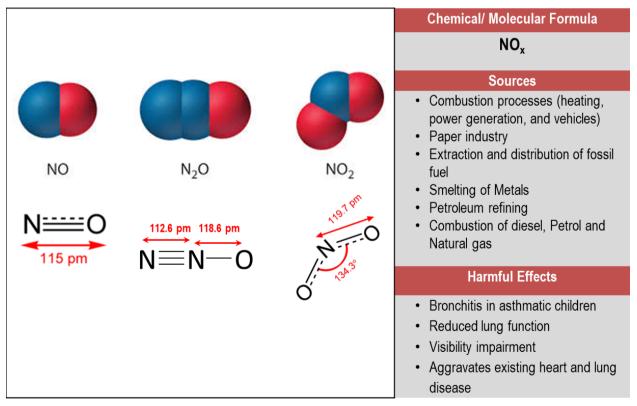
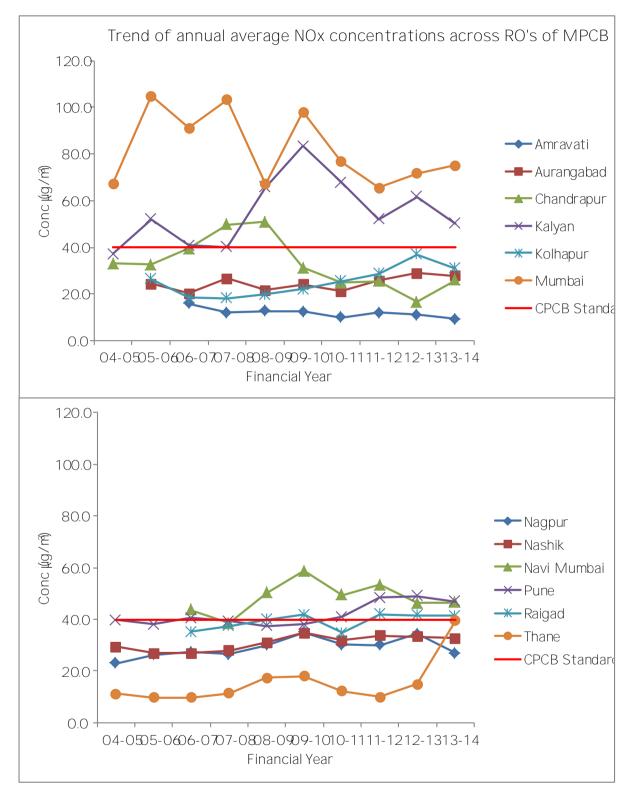




Figure No. 11: Molecular formula, sources and harmful impacts of oxides of nitrogen Data Source: UC Davis







## Trend of $NO_X$ Concentrations in the state

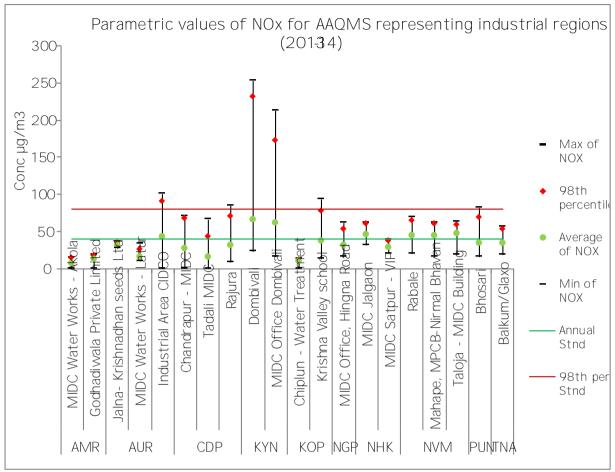
Figure No. 12 Trend of annual average NOx concentrations aross RO's of MPCB



#### Comparison for last few years

As seen in Figure No. 12 the most urbanised regions of the state like Mumbai, Pune, Navi Mumbai and Kalyan are the ones which are severely affected by high<sub>x</sub>NOncentrations. While the moderately crowded and urbanised regions like Nagpur, Amravati, Aurangabad and Nasik recorded annual concentratiobelow the annual standard

In the past ten years the Mumbai region has recorded annual<sub>x</sub>NtOncentrations in the range of 6 Qug/m<sup>3</sup> which is almost double than the annual standard (gQm<sup>3</sup>). The Kalyan region which has major MIDC areas recorded the second highest annual concentrations for NQconcentrations in range of gQug/m<sup>3</sup> in the last five years.


Navi Mumbai region has also been recorded with high NQ concentrations consistently for the past five years. While in the Pune region, until 2009the NQ concentrationswere below the annual standard, beyond which a steady trend in the increase of NM2 is is observed. Since then the annual NO<sub>X</sub> concentration has been around  $\mu_0$ /m<sup>3</sup>. Also the Raigad region in the past three yeahs been a borderline case and violated the annual standard.

Amravati region shows a declining trend for the N@nd theannual concentrations for the past have always been under 2@/m<sup>3</sup>. The type wise performance NO<sub>X</sub> concentrations recorded by the AAQMS in Maharashtra active in the year 2011 have been presented in the following section.











Data Source: MPCB, May 2014

One may note from Figure No. 13 thata total7 out of 20AAQMS representing industral areas of Maharashtraxceeded the annual average NQstandard(4Qg/m<sup>3</sup>).

Dombivali-MIDC area recorded the highest annual N<sub>2</sub>O concentration at both the monitoring stations, MIDC Phasel and MIDC, office in range of 61 to 66µg¾,mwhich is well above theannual standard. The AAQMS at MIDC Phase II also recorded 24 hour reading for NO<sub>x</sub> concentrations (32µg/m<sup>3</sup>) almost three times the ally standard (80µg/m<sup>3</sup>).

Similarly, Navi-Mumbai industrial belt also recorded high levels of NQconcertration at all its three AAQMS with annual averageNO<sub>X</sub> levels in the range of 44 top**g**/m<sup>3</sup>. While the Nanded industrial area recorded annual NQ readings (42.9 $\mu$ g/m<sup>3</sup>) just above the standard (40 $\mu$ g/m<sup>3</sup>).

Further, NO<sub>X</sub> pollution was recorded to be a concern MIDC Jalgaon as the NO<sub>X</sub> concentration recorded were within a very narrow rang@1(to 61 $\mu$ g/m<sup>3</sup>) and the annual average was around 45 $\mu$ g/mindicating violation of the annual standard.

Industrial areas of Amravati, Aurangabad and Chandrapur were recorded cleain regard to NO  $_{\rm X}\,{\rm pollution}.$ 





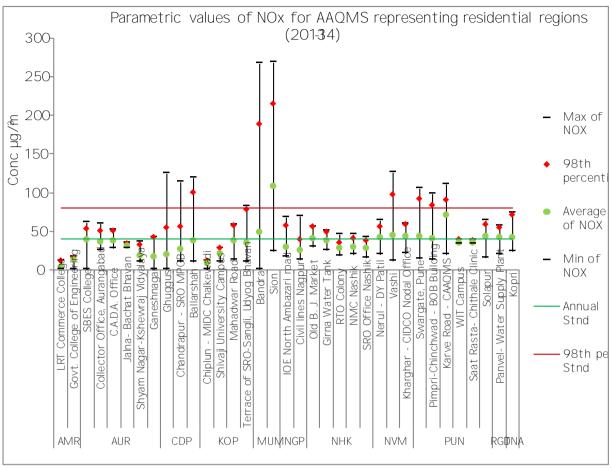
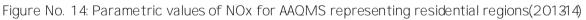

| RO   | Station name                | Station<br>code | Max of<br>NO x | 98th<br>percentile | Average of NO <sub>x</sub> | Min of<br>NO x |
|------|-----------------------------|-----------------|----------------|--------------------|----------------------------|----------------|
|      | CPCB Standard               |                 | 80             | 80                 | 40                         | 80             |
| AMR  | MIDC Water Works-Akola      | 701             | 14.0           | 14.0               | 6.9                        | 0.0            |
|      | Godhadiwala Private Limited | 549             | 18.0           | 17.0               | 12.1                       | 0.0            |
|      | Jalna-Krishnadhan seeds Ltd | 707             | 35.0           | 34.0               | 31.4                       | 27.0           |
| AUR  | MIDC Water Works-Latur      | 641             | 32.0           | 25.9               | 16.1                       | 10.0           |
|      | Industrial Area CIDCO       | 705             | 100.0          | 90.0               | 42.9                       | 0.0            |
|      | Chandrapur - MIDC           | 281             | 70.0           | 67.1               | 27.4                       | 0.0            |
| CDP  | Tadali MIDC                 | 638             | 66.0           | 42.5               | 15.7                       | 0.0            |
|      | Rajura                      | 640             | 85.0           | 70.5               | 31.5                       | 9.0            |
| KYN  | Dombivali                   | 265             | 252.0          | 231.7              | 65.7                       | 23.0           |
| NTIN | MIDC Office Dombivali       | -               | 212.0          | 172.0              | 61.9                       | 16.0           |
| КОР  | Chiplun -Water Treatment    | 490             | 12.0           | 11.5               | 9.2                        | 0.0            |
| KUF  | Krishna Valley school       | 576             | 93.0           | 76.9               | 36.6                       | 13.0           |
| NGP  | MIDC Office, Hingna Road    | 288             | 61.0           | 53.0               | 31.1                       | 16.0           |
| NHK  | MIDC Jalgaon                | 646             | 61.0           | 60.1               | 45.0                       | 31.0           |
|      | MIDC Satpur-VIP             | 269             | 38.0           | 37.1               | 28.2                       | 20.0           |
|      | Rabale                      | 491             | 69.0           | 65.0               | 44.5                       | 20.0           |
| NVM  | Mahape, MPCB-Nirmal Bhavan  | 493             | 62.0           | 60.5               | 44.5                       | 16.0           |
|      | Taloja - MIDC Building      | 496             | 63.0           | 58.9               | 47.1                       | 19.0           |
| PUN  | Bhosari                     | 312             | 81.0           | 68.0               | 34.7                       | 16.0           |
| TNA  | Balkum/Glaxo                | -               | 56.0           | 52.2               | 34.5                       | 19.0           |

Table No. 10 Data for NO x recorded at AAQMS representing Industrial areas (2013-14)


Data Source: MPCB, May 2014







## NO x concentration in residential areas



Data Source: MPCB, May 2014

Around 11 out of 35 AAQMS representing residential areasceeded the annualstandards for NOx concentrations ( $40\mu g/m^3$ ). As seen in Figure No. 14, the AAQMS at Mumbai (Sion), recorded the highest annual NO<sub>x</sub> concentration of 08.3  $\mu g/m^3$ , violating the standard by more than 2.5 times. Also the monitoring at Bandra (Mumbai) hich is located at a traffic junction recorded annual NOx concentrations of 487  $\mu g/m^3$ .

All the monitoring stations in Navi Mumbai and Pune recorded annual average NQ<sub>x</sub> concentrations in range of 30 to  $45\mu$ gi/mdicating NO<sub>x</sub> pollution in those areas. The CAAQMS at Pune (Karve road) recorded annual NQ concentrations which were almost double the standard. This could be attributed to dense vehicular population in both these regions.

Residential areas in Amravati, Aurangabad, Kolhapur and Nagpur were the best performing regions in terms of NO $_{\rm X}$  pollution and recorded the least annual average concentrations of NO $_{\rm X}.$ 



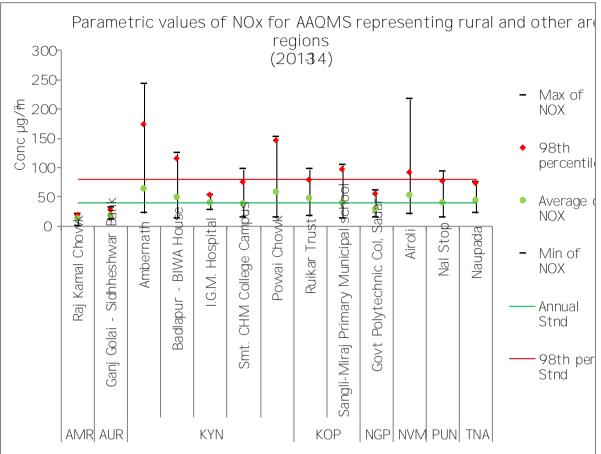

| RO    | Station name                          | Station<br>code | Max of<br>NO x | 98th<br>percentile | Average of NO <sub>X</sub> | Min of<br>NO x |
|-------|---------------------------------------|-----------------|----------------|--------------------|----------------------------|----------------|
|       | CPCB Standard                         |                 | 80             | 80                 | 40                         | 80             |
| AMR   | LRT Commerce College                  | 700             | 11.0           | 11.0               | 2.7                        | 0.0            |
| AIVIN | Govt. College of Engineering          | 548             | 16.0           | 15.0               | 11.9                       | 0.0            |
|       | SBES College                          | 511             | 61.0           | 52.2               | 39.2                       | 0.0            |
|       | Collector Office, Aurangabad          | 512             | 60.0           | 49.3               | 35.6                       | 25.0           |
| AUR   | C.A.D.A. Office                       | 513             | 51.0           | 50.1               | 37.5                       | 28.0           |
| AUK   | Jalna-Bachat Bhavan                   | 706             | 34.0           | 33.4               | 30.1                       | 28.0           |
|       | Shyam Nagar-Kshewraj Vidyalaya        | 642             | 36.0           | 31.1               | 17.3                       | 10.0           |
|       | Ganeshnagar                           | 703             | 41.0           | 41.0               | 16.2                       | 0.0            |
|       | Ghuggus                               | 267             | 124.0          | 53.6               | 19.2                       | 0.0            |
| CDP   | Chandrapur - SRO MPCB                 | 396             | 113.0          | 55.7               | 25.9                       | 9.0            |
|       | Ballarshah                            | 639             | 119.0          | 99.3               | 37.4                       | 10.0           |
|       | Chiplun - MIDC Chalkewadi             | 489             | 11.0           | 11.0               | 9.0                        | 0.0            |
| КОР   | Shivaji University Campus             | 508             | 28.0           | 27.5               | 20.4                       | 9.0            |
|       | Mahadwar Road                         | 510             | 58.0           | 56.1               | 36.8                       | 13.0           |
|       | Terrace of SRØSangli, Udyog<br>Bhavan | 574             | 82.0           | 76.9               | 34.2                       | 10.0           |
| MUM   | Bandra                                | -               | 267.0          | 188.0              | 48.7                       | 0.0            |
|       | Sion                                  | -               | 268.0          | 214.4              | 108.3                      | 24.0           |
| NGP   | IOE North Ambazari road               | 287             | 67.0           | 57.3               | 29.2                       | 16.0           |
| NOI   | Civil lines Nagpur                    | 711             | 69.0           | 39.2               | 24.5                       | 12.0           |
|       | Old B. J. Market                      | 644             | 55.0           | 55.0               | 40.6                       | 29.0           |
|       | Girna Water Tank                      | 645             | 50.0           | 49.0               | 37.2                       | 25.0           |
| NHK   | RTO Colony                            | 259             | 46.0           | 34.8               | 28.1                       | 18.0           |
|       | NMC Nashik                            | 280             | 46.0           | 39.6               | 28.4                       | 20.0           |
|       | SRO Office Nashik                     | 710             | 42.0           | 37.3               | 28.2                       | 15.0           |
|       | Nerul - DY Patil                      | 492             | 64.0           | 55.4               | 41.0                       | 20.0           |
| NVM   | Vashi                                 | -               | 125.0          | 97.0               | 44.3                       | 11.0           |
|       | Kharghar - CIDCO Nodal Office         | 494             | 59.0           | 58.0               | 42.2                       | 21.0           |
|       | Swargate, Pune                        | 381             | 105.0          | 91.0               | 42.5                       | 14.0           |
| PUN   | Pimpri -Chinchwad - BOB Building      | 708             | 98.0           | 82.4               | 39.4                       | 12.0           |
|       | Karve Road - CAAQMS                   | -               | 111.0          | 90.0               | 70.0                       | 19.0           |
|       | WIT Campus                            | 299             | 38.0           | 38.0               | 35.2                       | 33.0           |
|       | Saat RastaChithale Clinic             | 300             | 38.0           | 37.5               | 35.0                       | 33.0           |
|       | Solapur                               | -               | 63.0           | 58.0               | 42.5                       | 15.0           |
| RGD   | Panvel-Water Supply Plant             | 495             | 57.0           | 54.0               | 41.3                       | 20.0           |
| TNA   | Kopri                                 | 303             | 73.0           | 69.9               | 40.9                       | 23.0           |

Table No. 11: Data for NO x recorded at AAQMS representing residential areas (2013-14)

Data Source: MPCB, 204







# $\rm NO_{\, X}$ concentration in rural and other areas

Figure No. 15: Parametric values of NOx for AAQMS representing rural and other type of areas (201314)

Data Source: MPCB, May 2014

\*Note: I.G.M Hospital is categorized as a sensitive type of monitoring zone by MPCB

Out of all the 3 active monitoring stations represeing rural or othertype of areasaround 7 AAMQS violated the annual NO<sub>X</sub> standard. All the AAQMS in Kalyan, Kolhapur, Navi - Mumbai and Pune regions exceeded the NOxstandard The Ambernth, and Badlapur areas in Kalyan region, recorded annual NOx concentrations of 63.9 and 48.6µg/m<sup>3</sup> respectively... The peak 24 hour reading at Ambernath monitoring tation was recorded to be 42µg/m<sup>3</sup> followed by monitoring at Navi Mumbai (Airoli)

The AAQMS at Bhiwandi (IGM hospital) represents sensitive type of area and it view annual standard ( $30\mu g/m$ ) and recorded concentrations of  $39.8\mu g/m$ 

The AAQMS at Pune (Nal-Stop) recorded annual average NO<sub>X</sub> concentration (39.0  $\mu$ g/m) just under the annual standard (40 $\mu$ g/m<sup>3</sup>). While the Thane, Aurangabad, Nagpur and Kolhapur regions recorded NO<sub>X</sub> concentration well within the tandard Raj Kamal Chowk AAQMS at Amravati recorded the least annual average O<sub>X</sub> concentration of 218 $\mu$ g/m<sup>3</sup> among the stations representing rural and other type of areas.

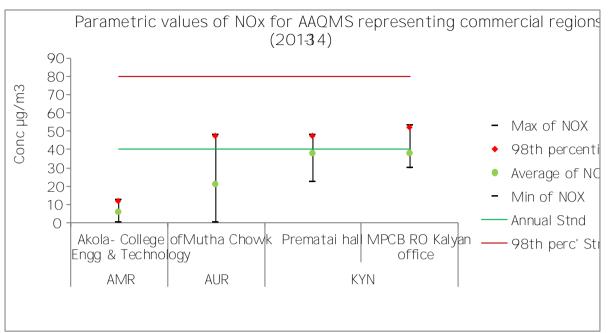




Table No. 12 Data for NO  $_{\rm x}$  recorded at AAQMS representing rural and other type of area (203-14)

| RO  | Station name                             | Station<br>code | Max of<br>NO <sub>x</sub> | 98th<br>percentile | Average of NO $_{\rm X}$ | Min of<br>NO <sub>x</sub> |
|-----|------------------------------------------|-----------------|---------------------------|--------------------|--------------------------|---------------------------|
|     | CPCB Standard                            |                 | 80                        | 80                 | 40                       | 80                        |
| AMR | Raj Kamal Chowk                          | 547             | 19.0                      | 18.0               | 12.8                     | 0.0                       |
| AUR | Ganj Golai - Sidhheshwar<br>Bank         | 643             | 31.0                      | 27.4               | 17.5                     | 11.0                      |
|     | Ambernath                                | 445             | 243.0                     | 172.8              | 63.9                     | 21.0                      |
|     | Badlapur - BIWA House                    | 649             | 123.0                     | 114.1              | 48.6                     | 13.0                      |
| KYN | I.G.M. Hospital                          | -               | 53.0                      | 52.0               | 39.8                     | 27.0                      |
|     | Smt. CHM College<br>Campus               | 647             | 96.0                      | 74.3               | 37.3                     | 15.0                      |
|     | Powai Chowk                              | 648             | 151.0                     | 145.9              | 57.8                     | 15.0                      |
|     | Ruikar Trust                             | 509             | 96.0                      | 78.8               | 47.7                     | 17.0                      |
| КОР | Sangli-Miraj Primary<br>Municipal school | 575             | 103.0                     | 97.1               | 40.1                     | 13.0                      |
| NGP | Govt Polytechnic Col,<br>Sadar           | 314             | 59.0                      | 54.8               | 28.1                     | 14.0                      |
| NVM | Airoli                                   | -               | 217.0                     | 91.0               | 52.7                     | 19.0                      |
| PUN | Nal Stop                                 | 379             | 93.0                      | 76.9               | 39.0                     | 14.0                      |
| TNA | Naupada                                  | 304             | 75.0                      | 73.0               | 42.6                     | 21.0                      |

Data Source: MPCB, 204


Units: µg/m³

\*Note: I.G.M Hospital is categorized as a sensitive type of monitoring zonæbdy the CB and ards are 8Qug/mand 30µg/mafor 24 and annual averages.











As seen in Figure No. 16 all the AAQMS representing commercial areas recorded NOx levels well below acceptable limit for annual and daily standard Although the AAQMS at MPCB office at Kalyan, recorded the highe  $MO_X$  value of 53µg/m<sup>3</sup> theannual average was around 38µg/m<sup>3</sup> which was wellwithin the standard AAQMS at A mravati recorded the lowest annual NOx concentrations GE µg/m<sup>3</sup>.

| RO  | Station name                            | Station<br>code | Max of<br>NO x | 98th<br>percentile | Averag<br>e of<br>NO x | Min of<br>NO x |
|-----|-----------------------------------------|-----------------|----------------|--------------------|------------------------|----------------|
|     | CPCB Standard                           |                 | 80             | 80                 | 40                     | 80             |
| AMR | Akola - College of Engg<br>& Technology | 702             | 12.0           | 11.7               | 5.6                    | 0.0            |
| AUR | Mutha Chowk                             | 704             | 48.0           | 47.1               | 20.8                   | 0.0            |
| KYN | Prematai hall                           | _               | 48.0           | 47.0               | 38.0                   | 22.0           |
|     | MPCB RO Kalyan office                   | _               | 53.0           | 52.0               | 38.2                   | 30.0           |

| Table No  | 12 Data for NO | rocordodatAAONAS ro         | onrocontina | commercial areas (201214) |
|-----------|----------------|-----------------------------|-------------|---------------------------|
| Table NO. | 15. Data tu NO | x I ecol deua la quivis i e | epresenting | commercial areas(2013-14) |

Data Source MPCB, May 2014





# Respirable Suspended Particulate Matter (RSPM)

Particulate Matteis a complex mixture offine particles and aerosols, and is also known as particle pollution It is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and dust particles that are 10 micrometers in diameter or smallercan pass through the throat and ose and enter the lungs and are commonly referred to as RSM (Respirable Suspended Particulate Matter). They are even smaller than human hair follicle and fine sand particles igure No. 17). Once inhaled, these particles can affect the heart and lungs and cause serious health effects.

Various studies prove the relationship of high Payhd respiratory problems. Statistical analysis of data indicate a relationship between increase in particulate concentration and rise in the number of hospital visits for upper respiratory infections, cardiaeases, bronchitis, asthma, pneumonia, emphysema and so on. Studies also indicate that much of the PM in the atmosphere iscarcinogenic in natureIn some cases it has been observed that exposure to particulatematterin combination with other pollutans such a RSPM produces more severe health deterioration than exposure to each pollutant separately.

Several specific substances which are constituents of PM have been observed to cause some damage to plants and vegetation. Particles containing fluoridesppear to cause plant damage, and magnesium oxide falling on agricultural soils habeen seen to cause plant growth. PM affects the visibility in a region. Due to absorption and scattering of light by airborne particulates, the visibility tends to doee. PM can affect painted surfaces, clothing, and curtains just by settling on them. Also, PM is known to cause direct chemical damage by corrosion.

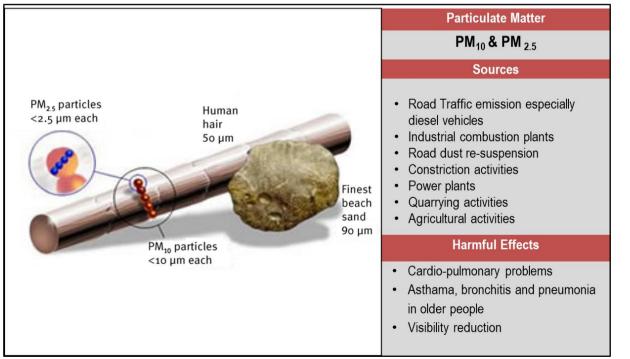



Figure No. 17: Size difference between  $PM_{15}$  and  $PM_{10}$  their sources and hanful impacts of Particulate Matter

Data Source: Parivesh ENVIS, CPCB







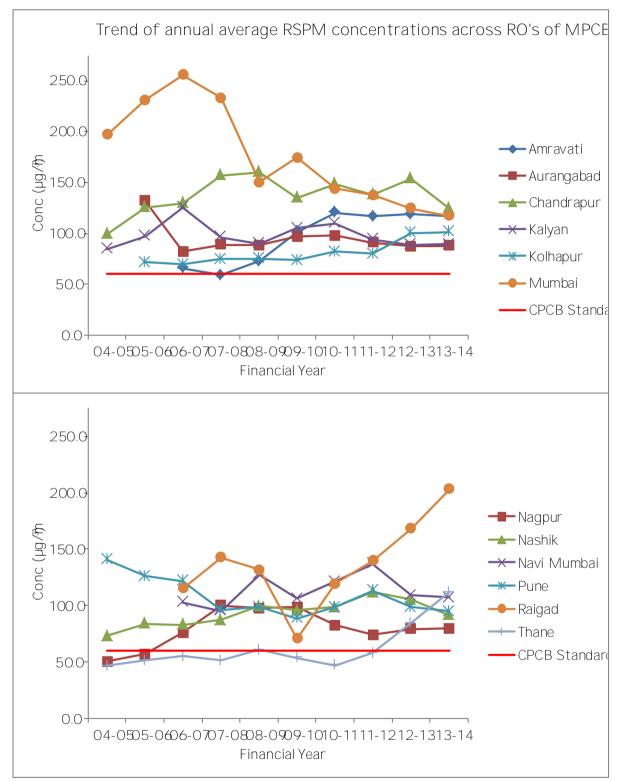
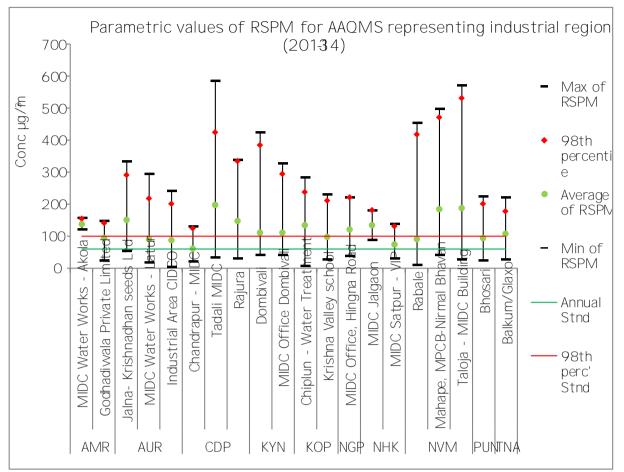


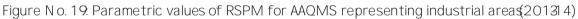

Figure No. 18 Trend of annual average RSPM concentrations across RO's of MPCB



#### Comparison for last few years


The RSPM concentrations across all the regions M and M and M and M are been very high (Figure No. 18). Even the regions with low SQ and NO  $_X$  concentrations have recorded high RSPM concentration.

Mumbai and Chandrapur regions are amongst the most highly polluted regions for RSPM concentrations. Although one may note a declining trend in RSPM concentrations Mumbai region, the annual concentrations across placest ten years have begatmost two to three times the annual standard. The Chandrapur region has also recorded high RSPM concentrations in the range of 10500µg/m<sup>3</sup>. The Chandrapur region has major power plants, cement manufacturing and coal mining actives. These activities could be attributed to high RSPM concentrations in the region.


Thane and Raigad have in the past three years recorded an inclining trend for annual RSPM concentrations. Wheareasthe RSPM concentrations in the Nagpur and Nashik registry been in the range of  $300 \mu g/m^3$  The type wise performance for RSPM concentrations recorded by the AAQMS in Maharashtra active in the year 2043 have been presented in the following section.







## RSPM concentration inindustrial areas



Data Source: MPCB, May 2014

As seen in Figure No. 19 out of all the monitoring stations representiing ustrial areas of Maharashtra, the highest annual average RSPM concentrations was reco**Tded** MIDC area in Chandrapur RO (194.8µg/m<sup>3</sup>) which is almost3 times the annual standard and nearly double the daily standard. The Same AAQMS also recorded the highest daily RSPM concentration of  $5\beta g/m^3$ .

The MIDC area in Amravati region consistently recorded high RSPM levels which were in the range of 118 to  $\mu$ g/m<sup>3</sup>. While the region recorded low Soland NO<sub>X</sub> levels, the RSPM were unusually high with even the inimum daily reading exceeding the 24 hour standard. Similarly the MIDC at Jalgaon recorded a narrow range of RSPM pollution with annual<sub>x</sub>NO levels of 132. $\mu$ g/m<sup>3</sup>. The data sets for the parametric values of RSPM/centrations recorded at AAQMS in industrial areas of Maharashtra have been tabulated in the No. 14.





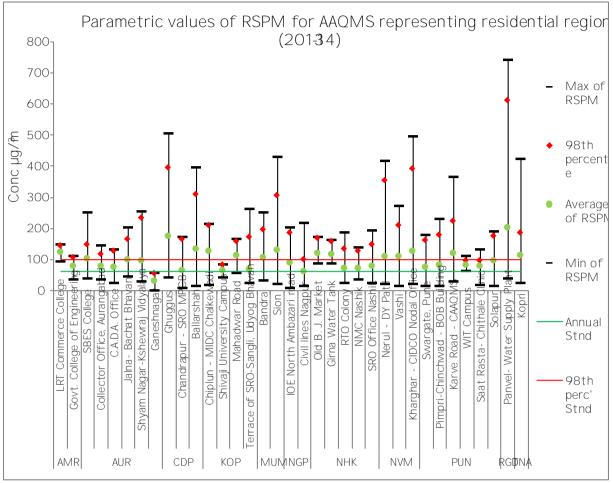
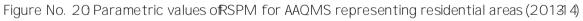

| RO    | Station name                  | Station<br>code | Max of<br>RSPM | 98th<br>percentile | Average<br>of RSPM | Min of<br>RSPM |
|-------|-------------------------------|-----------------|----------------|--------------------|--------------------|----------------|
|       | CPCB Standard                 |                 | 100            | 100                | 60                 | 100            |
| AMR   | MIDC Water Works-Akola        | 701             | 157.0          | 152.4              | 135.6              | 118.0          |
| AIVIK | Godhadiwala Private Limited   | 549             | 146.0          | 139.6              | 94.0               | 24.0           |
|       | Jalna-Krishnadhan seeds Ltd   | 707             | 332.0          | 290.1              | 150.0              | 51.0           |
| AUR   | MIDC Water Works-Latur        | 641             | 292.0          | 216.6              | 88.5               | 16.0           |
|       | Industrial Area CIDCO         | 705             | 238.0          | 199.9              | 84.9               | 2.0            |
|       | Chandrapur - MIDC             | 281             | 130.0          | 122.8              | 60.0               | 18.0           |
| CDP   | Tadali MIDC                   | 638             | 582.0          | 422.3              | 194.8              | 33.0           |
|       | Rajura                        | 640             | 336.0          | 333.7              | 145.1              | 29.0           |
| KYN   | Dombivali                     | 265             | 424.0          | 3839               | 110.9              | 39.0           |
| KIN   | MIDC Office Dombivali         | -               | 327.0          | 293.6              | 108.5              | 38.0           |
| КОР   | Chiplun -Water Treatment      | 490             | 284.0          | 235.0              | 133.0              | 7.0            |
| KUF   | Krishna Valley school         | 576             | 229.0          | 209.9              | 94.9               | 25.0           |
| NGP   | MIDC Office, Hingna Road      | 288             | 219.0          | 218.3              | 118.8              | 37.0           |
| NHK   | MIDC Jalgaon                  | 646             | 179.0          | 178.1              | 132.3              | 85.0           |
|       | MIDC Satpur-VIP               | 269             | 137.0          | 129.4              | 71.3               | 29.0           |
|       | Rabale                        | 491             | 454.0          | 415.2              | 89.7               | 10.0           |
| NVM   | Mahape, MPCB-Nirmal<br>Bhavan | 493             | 498.0          | 471.0              | 181.6              | 39.0           |
|       | Taloja - MIDC Building        | 496             | 571.0          | 530.2              | 187.3              | 26.0           |
| PUN   | Bhosari                       | 312             | 222.0          | 199.0              | 92.8               | 21.0           |
| TNA   | Balkum/Glaxo                  | -               | 219.0          | 175.6              | 107.0              | 26.0           |

Table No. 14: Datafor RSPM recorded at AAQMS representing industrial areas (2013) 4)


Data Source: MPCB, 204







### RSPM concentration imesidential areas

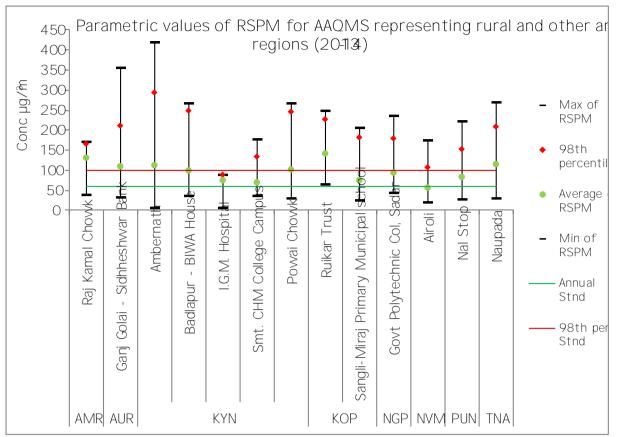


Data Source: MPCB, May 2014

All the AAQMS representing residential areas in Maharashtra recordedry high levels of levels of RSPMpollution in the year 203-14. The only exception to the same was the AAQMS representing Ganeshnagar area in Aurangabad region which recorded RSPM concentrations well within the daily and annual standards.

The Panvel AAQMS recorded severely high concentrations of annual RSPM levels  $(203.\beta g/m^3)$ . It also recorded the highest daily RSPM concentrations over  $630 \mu g/m$  Similarly 3 AAQMS at Amravati (LRT College), Pune (WIT campus), Kolpahur (Shivaji university campus) recorded high RSPM concentrations throughout the year. The RSPM concentrations ranged between 60 to  $150 \mu g/m$  concentrations.

Similarly, the Nashik region also recorded severe concentrations of RSPM concentrations throughout the year. The annual average levels at the AAQMS in Nashik ranged between 70 to  $12\rho g/m3$ .




| RO    | Station name                          | Station<br>code | Max of<br>RSPM | 98th<br>percentile | Average<br>of RSPM | Min of<br>RSPM |
|-------|---------------------------------------|-----------------|----------------|--------------------|--------------------|----------------|
|       | CPCB Standard                         |                 | 100            | 100                | 60                 | 100            |
| AMR   | LRT Commerce College                  | 700             | 148.0          | 145.5              | 122.1              | 91.0           |
| AIVIK | Govt. College of Engineering          | 548             | 110.0          | 107.7              | 79.8               | 35.0           |
|       | SBESCollege                           | 511             | 250.0          | 147.0              | 102.0              | 36.0           |
|       | Collector Office, Aurangabad          | 512             | 144.0          | 114.8              | 79.3               | 33.0           |
|       | C.A.D.A. Office                       | 513             | 129.0          | 125.0              | 74.1               | 23.0           |
| AUR   | Jalna-Bachat Bhavan                   | 706             | 201.0          | 164.3              | 99.6               | 44.0           |
|       | Shyam Nagar-Kshewraj<br>Vidyalaya     | 642             | 255.0          | 232.4              | 94.6               | 26.0           |
|       | Ganeshnagar                           | 703             | 55.0           | 54.0               | 28.8               | 1.0            |
|       | Ghuggus                               | 267             | 505.0          | 393.7              | 174.3              | 41.0           |
| CDP   | Chandrapur - SRO MPCB                 | 396             | 172.0          | 164.0              | 65.9               | 5.0            |
|       | Ballarshah                            | 639             | 394.0          | 309.1              | 134.7              | 14.0           |
|       | Chiplun - MIDC Chalkewadi             | 489             | 211.0          | 208.9              | 127.5              | 16.0           |
|       | Shivaji University Campus             | 508             | 83.0           | 82.5               | 636                | 41.0           |
| КОР   | Mahadwar Road                         | 510             | 165.0          | 156.3              | 112.7              | 53.0           |
|       | Terrace of SRØSangli, Udyog<br>Bhavan | 574             | 261.0          | 172.0              | 69.4               | 24.0           |
| MUM   | Bandra                                | -               | 252.0          | 197.0              | 106.0              | 29.0           |
|       | Sion                                  | -               | 428.0          | 304.1              | 131.2              | 20.0           |
| NGP   | IOE North Ambazari road               | 287             | 202.0          | 185.8              | 90.3               | 8.0            |
|       | Civil lines Nagp ur                   | 711             | 216.0          | 99.2               | 60.6               | 15.0           |
|       | Old B. J. Market                      | 644             | 171.0          | 167.1              | 118.4              | 85.0           |
|       | Girna Water Tank                      | 645             | 161.0          | 159.1              | 115.6              | 86.0           |
| NHK   | RTO Colony                            | 259             | 185.0          | 133.5              | 70.8               | 24.0           |
|       | NMC Nashik                            | 280             | 136.0          | 127.7              | 70.5               | 34.0           |
|       | SRO Office Nashik                     | 710             | 193.0          | 147.3              | 78.5               | 23.0           |
|       | Nerul - DY Patil                      | 492             | 414.0          | 354.4              | 109.4              | 19.0           |
| NVM   | Vashi                                 | -               | 270.0          | 208.3              | 107.8              | 12.0           |
|       | Kharghar - CIDCO Nodal Office         | 494             | 495.0          | 391.0              | 125.3              | 20.0           |
|       | Swargate, Pune                        | 381             | 179.0          | 162.0              | 74.8               | 13.0           |
|       | Pimpri -Chinchwad - BOB<br>Building   | 708             | 230.0          | 179.1              | 81.5               | 15.0           |
| PUN   | Karve Road - CAA QMS                  | -               | 363.0          | 223.6              | 121.4              | 26.0           |
|       | WIT Campus                            | 299             | 110.0          | 97.3               | 83.6               | 62.0           |
|       | Saat RastaChithale Clinic             | 300             | 131.0          | 95.5               | 77.0               | 16.0           |
|       | Solapur                               | -               | 190.0          | 174.9              | 96.2               | 15.0           |
| RGD   | Panvel-Water Supply Plant             | 495             | 740.0          | 610.6              | 203.3              | 37.0           |
| TNA   | Коргі                                 | 303             | 421.0          | 184.5              | 114.4              | 25.0           |

Table No. 15: Datafor RSPM recorded at AAQMS representing residential areas (201314)

Da ta Source: MPCB, 204





## RSPM concentration in rural and other areas



#### Data Source: MPCB, May 2014

\*Note: I.G.M Hospital is categorized as a sensitive type of monitoring zone by MPCB

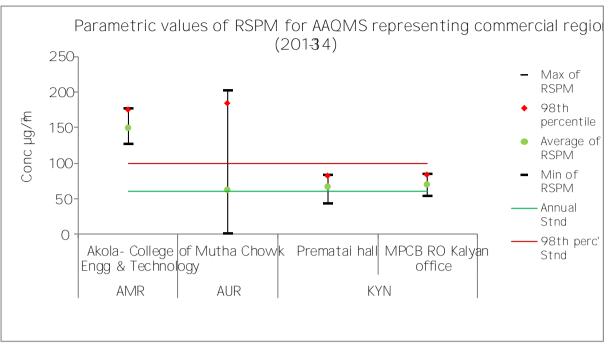
The AAQMS which represented mixed and other areas in Maharashtra recorded RSPM concentrations bove the prescribed standards (daily and annual). Especially Kolhapur and Kaly an region consistently recorded high RSPM concentrations the Kolhapur region the AAQMS at Ruikar trust, recorded the highest annual RSPM concentrations (fmsO.dug/m<sup>3</sup>) among the AAQMS representing rural and other type of areas.

All the AAQMS in the Kalyan region (A mbernath, Badlapur, Ulhasnagar and Bhiwandi) recorded annual RSPM concentrations in the range 700°110µg/m<sup>3</sup>, which was more than the annual RSPM standard (&@/m<sup>3</sup>). The 98<sup>th</sup> percentile readings at 3 AAQMS in Kalyan region were more than 2µ65/m<sup>3</sup> of which Ambernath area (2940g/m<sup>3</sup>) was the most severe followed by Badlapur (24µ5g/m<sup>3</sup>) and Ulhasnagar (244.µ5g/m<sup>3</sup>) areas The AAQMS representing sensitive region in Bhiwandi (IGM hospital) also violated the annual standards.

The Airoli monitoring station in Navi Mumbai recorded annual concentrations  $(5 \mu g/m^3)$  less than the annual standard for RSPM.



Table No. 16 Data for RSPM recorded at AAQMS representing rural and other types of areas (2013-14)


| RO  | Station name                             | Station<br>code | Max of<br>RSPM | 98th<br>percentile | Average<br>of RSPM | Min of<br>RSPM |
|-----|------------------------------------------|-----------------|----------------|--------------------|--------------------|----------------|
|     | CPCB Standard                            |                 | 100            | 100                | 60                 | 100            |
| AMR | Raj Kamal Chowk                          | 547             | 168.0          | 162.8              | 128.3              | 35.0           |
| AUR | Ganj Golai -Sidhheshwar<br>Bank          | 643             | 353.0          | 207.8              | 107.2              | 31.0           |
|     | Ambernath                                | 445             | 417.0          | 290.4              | 110.7              | 3.0            |
|     | Badlapur - BIWA House                    | 649             | 265.0          | 245.0              | 96.4               | 33.0           |
| KYN | I.G.M. Hospital                          | -               | 87.0           | 86.2               | 72.3               | 3.0            |
|     | Smt. CHM College Campus                  | 647             | 173.0          | 132.0              | 67.9               | 32.0           |
|     | Powai Chowk                              | 648             | 265.0          | 244.5              | 99.1               | 29.0           |
|     | Ruikar Trust                             | 509             | 245.0          | 224.7              | 140.6              | 62.0           |
| КОР | Sangli-Miraj Primary<br>Municipal school | 575             | 204.0          | 180.6              | 73.8               | 23.0           |
| NGP | Govt Polytechnic Col,<br>Sadar           | 314             | 234.0          | 176.9              | 91.7               | 41.0           |
| NVM | Airoli                                   | -               | 171.0          | 104.5              | 53.3               | 18.0           |
| PUN | Nal Stop                                 | 379             | 219.0          | 150.9              | 81.6               | 25.0           |
| TNA | Naupada                                  | 304             | 268.0          | 207.4              | 113.1              | 28.0           |

Data Source: MPCB, 204











Although all the AAQMS representing commercial areas in Maharasha violated the annual

standard for RSPM, the AAQMS at Akola engineering college in Amravati region was the most severely affected area. Even the minimum 24 hour reading recorded  $\mu$  (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2

|  | Table No. 1 | 17: Data for RSPM | recordedatAAQMS | representing | commercial areas(20B-14) |
|--|-------------|-------------------|-----------------|--------------|--------------------------|
|--|-------------|-------------------|-----------------|--------------|--------------------------|

| RO  | Station name                           | Station<br>code | Max of<br>RSPM | 98th<br>percentile | Average<br>of<br>RSPM | Min of<br>RSPM |
|-----|----------------------------------------|-----------------|----------------|--------------------|-----------------------|----------------|
|     | CPCB Standard                          |                 | 100            | 100                | 60                    | 100            |
| AMR | Akola -College of Engg &<br>Technology | 702             | 176.0          | 173.8              | 149.1                 | 126.0          |
| AUR | Mutha Chowk                            | 704             | 201.0          | 184.1              | 61.5                  | 1.0            |
| KYN | Prematai hall                          | -               | 83.0           | 81.2               | 66.5                  | 43.0           |
|     | MPCB RO Kalyan office                  | -               | 84.0           | 83.6               | 68.9                  | 53.0           |

Data Source:MPCB, 2014





# Carbon Monoxide

Partial oxidation of carborcontaining compounds leads to production of CO (Carbon monoxide); which forms when there is not enough oxygen to produce2(CCarbon dioxide), such as when operating atove or an internal combustion engine in an enclosed space. CO has no colour, odour or taste and is highly toxic to humans and animals at higher concentrations. Although CO has a hallife of 5 hours in fresh air, it combines with haemoglobin to producecarboxy-haemoglobin, which occupies the space in haemoglobin that normally carries oxygen, and hence is a toxic gas. It is known to reduce the oxygen carrying capacity of blood, causes headaches, nausea, and dizziness and at high concentrations can lead to the partial combustion of petroleum products in vehicles and, emissions from gas stoves are some of the major sources of CO emissions.

CO is monitored at the CAAQMS in Maharashtra at Bandra, Pune and Solapulihe 8 hour concentrations have been prested for the data recorded at the CAAQMS for the yeaß-201 14 in Figure No. 23

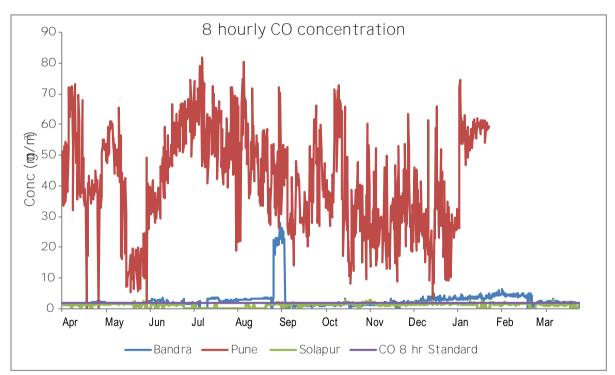



Figure No. 23 Carbon monoxide concentrations at Bandr, Pune and Solapur (2013-14)

The Pune region consistently exceeded the 8 hostandard (2mg/m3) fo 100percent of the observations, while the Bandrand Solapur region violated the same for 52.3 and 7 percent of the observations espectively. In the winter season the Bandra region exceeded the eight hour standards consistently and also a peak was observed in late August. Unusually high levels of CO have been observed in Pune in contrast to the previous two years. Emissions from vehicles and increasing usage of vehicles in Pune could be attributed to highslepf CO in Pune. The Solapur area is relatively not polluted with CO pollution.





## Ozone

O<sub>3</sub> (Ozone) is a secondary pollutant, formed when NOx and VOCs undergo a photochemical reaction in the atmosphere. People who are active outdoors, especially insumity days are more vulnerable to the harmful impacts of 3. Children are also more likely than adults to have asthma as an impact of 3 Pollution. Breathing ozone can trigger a variety of health problems including chest pain, coughing, throat irritationand congestion. It can worsen bronchitis, emphysema, and asthma. Ground level ozone also can reduce lung function and inflame the linings of the lungs. Repeated exposure may permanently scar lung tissue.

Ozone is monitored at select locations in Maharasah. The data for ozone monitored by the CAAQMS at Pune, Bandra for the year 20-114 has been presented in Figure No. 24

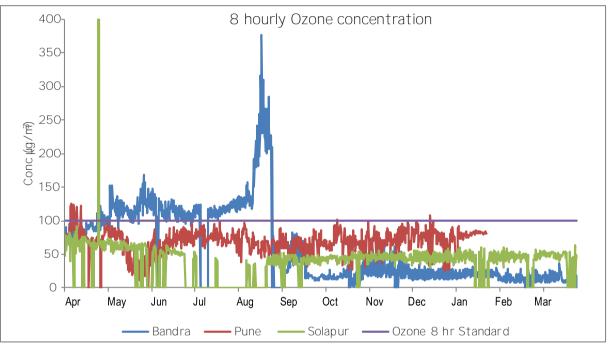



Figure No. 24 Ozone concentrations at Bandr, Pune and Solapur (20134)

O<sub>3</sub> levels were recorded to be high Mumbai (Bandra region) especially in the summer and monsoon months. In the year 2013, the Bandra region violated the Q<sub>3</sub> standard for more than 30percent of the observations recorded at that AAQMS.peake O<sub>3</sub> concentrations (337.µg/m<sup>3</sup>) were recorded in the month of Augusthe reason for slightly higher ozone condition in Mumbai could be attributed to the prevailing weather conditions and complex chemistry in formation of ozone involving hydrocarbonsnal nitrogen oxides in presence of sunlight. The Pune and Solapur areas recorded <sub>3</sub>Qpollution under control as the exceedence was recorded for merely 1.4 and 0.1 percent of the readings respectively.





## Benzene

Benzene (CaH 6) is a colourless sweet smelliniguid and is generated whenever carbonich materials undergo incomplete combustion. Combustion of aromatic compounds, evaporation during fuelling, tobacco smoke, furniture wax and glue paints are some of the major sources of benzene pollution. The naturaources include volcanoes and forest fires. Benzene increases the risk of cancer and other illnesses. Benzene is a notorious cause of bone marrow failure. Substantial quantities of epidemiologic, clinical, and laboratory data link benzene to aplastic anemia, acute leukaemia, and bone marrow abnormalities. Benzene targets liver, kidney, lung, heart and the brain and can cause strand breaks of the DNA (Deoxyribonucleic acid), ultimatelyleading to chromosomal damage.

Benzene pollution was recorded at 2 CAQAMS, Bandra and Pune. The annual average benzene concentrations were recorded to 1b@ and 151.3 g/m<sup>3</sup> respectively. The annual average standard for benzene hasbeen set as 5g/m<sup>3</sup>by CPCB, indicating that the benzene pollution at Pune is of major concern. Upon segregating the data for eight hour intervals, it is interesting to note that high BenzentePaune was recorded during the day time (8am to 4pm) sampling. The evening (4pm to 12am) and night (12am to 8am) sampling recorded average of about 36 and g/m<sup>3</sup> respectively.





# Air Quality Index

Quality of air around us has direct implications on obealth. The air quality, like weather of a location, can change dynamically within a span of an hour. Hence to convey the information on outdoor air quality in the easiest possible way which could be easily understood by general public, tools such as AQAir Quality Index) have been devised.

Various International environmental agencies such as USPA have developed their own set of mathematical algorithms to determine AQI, which are bedsen human exposure dose of air pollutants Pollutant specific, parametric indexing has become very instrumental and indicative in drawing conclusion on the status and trend of air quality by measuring pollution.

The AQI is useful for reporting daily air quality and to gauge the pollution load. Most of the AQI developed by various agencies are within a range of 0 to 500. An AQI of 100 or below indicates attainment of National Ambient Air Quality Standards. Higher value of AQI indicates high level of pollution. When AQI values are above 100, air quality is considered to be unhealthyl at first for certain sensitive groups of people, then for everyone (including  $Y U \cap h \cap dY c d \cap Y t \cap U g \cap 5 t = j U \cap i Y g \cap [Y h \cap N] [NY f \cap 8 Y d Y further divided into five classes of AQI, which present different health concernsmake it easy to understand, the categories of AQI are assigned condites (Figure No. 25) i.e. color ; f Y Y b \cap h c \cap D; c c X N Z \cap MY \cap c k \cap h c \cap D A c X Y f U h Y N Z \cap U b [Y \cap D G Y ] Y f Y N ``$ 

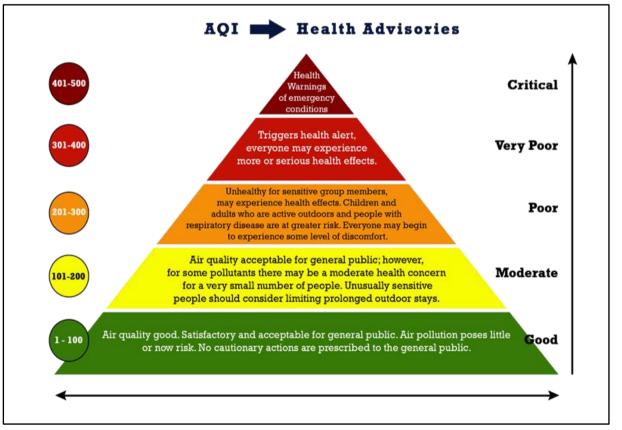



Figure No. 25 Health advisories for various range of Air Quality Indices and respective colour codes

Data Source: EPA and System of Air Quality Weather Forecasting and ResearchMoES, Gol

# AQI for India n Standards

With reference to theformula used for calculating AQI, the reakpoint used for SQ and NO<sub>2</sub> by EPA are of 1 hour averaging time and not -24 urly whereas, the AAQM S in Maharashtrareport levels of major air pollutants or a period of 24 hour. In addition, an AQI value of 100 or below would correspond to the attainment of the pollutant concentration adhering to National Ambient Standards. Since it was not possible to derive any value from it, US-9 D 5  $\tilde{N}$  g  $U \in [cf] h a g k f f b c h i g f X "$ 

A ir quality index is a piecewise linear function of the pollutant concentration of there is a discontinuous jump of AQI unit and the corresponding adjustments are made to set the low and high range of AQI corresponding to a certain concentration of the polluttant anpur has defined daily exposure limits of various pollutants and laid sets of formulae to calculate AQI on similar lines with other indexing worldwide (Table No. 18). These calculations have been endorsed by NEERI (National Environmental Engineering Research Institute), a constituent of CSIR (Council of Scientific & Industrial Research Institute).

The algorithm for calculating Air Quality Index is based upon daily averaging time and since dynamic behaviour of concentration of air pollutants causes it to change evidminwi an hour, mentioning of the air quality annually would average out the extremities. The possibility of examining daily air quality gives the scope to study in detail the subject hence the daily data recorded by AQMS against the 24 hourstandard has been considered while developing the AQI for the AAQMS in Maharashtra.

| Index                                                                                                                                                                                                                                                                                                      | Category  | RSPM        | NO x       | SPM         | RSPM        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------|-------------|-------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                            |           | (24 hr avg) | (24hr avg) | (24hr avg.) | (24hr avg.) |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |           | (µgm∕m)     | (µgm∕m)    | (µgm∕m)     | (µgm∕m³)    |  |  |  |  |
| 0-100                                                                                                                                                                                                                                                                                                      | Good      | 0-80        | 0-80       | 0-200       | 0-100       |  |  |  |  |
| 101-200                                                                                                                                                                                                                                                                                                    | Moderate  | 81-367      | 81-180     | 201260      | 101-150     |  |  |  |  |
| 201300                                                                                                                                                                                                                                                                                                     | Poor      | 368786      | 181-564    | 261400      | 151-350     |  |  |  |  |
| 301400                                                                                                                                                                                                                                                                                                     | Very poor | 7871572     | 5651272    | 401800      | 351420      |  |  |  |  |
| 401500                                                                                                                                                                                                                                                                                                     | Severe    | >1572       | >1272      | >800        | >420        |  |  |  |  |
| <pre>where: = the (Air Quality) index<br/>= the pollutant concentration<br/>= h \ Y ` W c b W Y b h f U h ] c b ` V f Y U _ d c ] b h ` h \ U h ` ] g `<br/>= the concentration breakpoint ` h \ U h ` ] g `<br/>= the index breakpoint corresponding to<br/>= the index breakpoint corresponding to</pre> |           |             |            |             |             |  |  |  |  |

Table No. 18 Sub-index and breakpoint pollutant concentration for Indian Air Quality Index

<sup>&</sup>lt;sup>c</sup>Research Article, Prakash Mamta and Bassin J.K<u>A nalysis of Ambient Air Quality Using Air Quality Ind</u> AET/ Vol.I/ Issue II/July -Sept., 2010/10614 E-ISSN 09763945





# A QI for AAQMS in Maharashtra

The data for air quality is regularly recorded by the AAQMSwhich monitor three parameters majorly, namely RSPM, NO<sub>X</sub> and SO<sub>2</sub> These parameters have been analysed for above mentioned calculations. Of the three lipitants RSPM is the most predominant air pollutant across the state he concentration levels were converted into AQI using formulae elaborated inTable No. 18° : ] b U ``mž` h \ Y` \ ] [ \ Y g h ` c f ` Đ X c a ] the respective individual pollutant becomes the AQI for that day. The term composite AQI has been used to analyse the performance of each AAQMS, in terms of the occurrence of a certain air quality recorded in that region.

As per the results obtained upon developing the mpositeAQI for 201314 Figure No. 26 one may notethatNavi-Mumbai, Mumbai and Chandrapur are the regions which registered U ] f \_ e i dubr to Severe No. 26 a considerable number of observations throughout the year

Navi Mumbai area and its close neighbourhood Panvairea (Raigad RO) f Y Wc f X Y X  $\stackrel{\circ}{\to}$  Đ G Y j Y air quality for more than 5 and 10 percent of the observation days respectively. While the Đ D c c f  $\tilde{N}$   $\stackrel{\circ}{\to}$  U b X  $\stackrel{\circ}{\to}$  D A c X Wefelt be diffed for inforeet hab a significant the areas. This indicates that the ambient air in Navi Mumbai (developing nodes) is highly fullution prone. This is majorly due to high RSPM concentrations ince these areas have been recordeX  $\stackrel{\circ}{\to}$  D; c c X  $\tilde{N}$   $\stackrel{\circ}{\to}$  E =  $\stackrel{\circ}{Z}$  c f  $\stackrel{\circ}{\to}$  a c f Y  $\stackrel{\circ}{\to}$  h \ Y  $\stackrel{\circ}{\to}$ 

G] a] `Uf`mž`] b`AiaVU] fY[] cb`Vch\`h\Y`55EAG`Uh quality for 20 and 30 percent of netwoorded observations, while the rest of the time the air e i U`] hm`kUg`WUhY[cf]gY XapartU foromEhiAgkt RSSPMI concentrations while both the AAQMSB (and ra and AAQMS at Sion recorded high NQ concentrations, while both the AAQMSB (and ra and G] cbk`fYWcfXYX`U`acgh`U`` boonCentration RSPMI of RSPMI g`Ug`Đ and NO<sub>x</sub> to be the main concernos f pollutions in Mumbai.

It is striking to note that 4 out of 6 AAQMS, namely Rajura, Ballarshah, Ghuggus, and Tadali MIDC have Đ; c c X Ñ U] f e i U ] h m Z c f a Y f Y ') d Y f WY b h c Z ' I observations in that yeark Y f Y WU h Y [ c f ] g Y X U g. The Asit VatNofi is heven N U b X more critical atTadali -MIDC and Ghuggus where at certain days the air quagilihas been recorded to be in the category Dotery PoorNand Decvere N The bias is majorly due tohigh RSPM levels recorded in the region, since the AQI fSO<sub>2</sub> and NOx levels in the region are well within the acceptable limits and a air quality was corded to be D ood N for both the parameters (Figure No. 29 and Figure No. 30). The mining activities, emissions from power plants, cement factories in the region could be thajor source of the same. A stringent regulatory policy and strict adherence to the norms is highly desired in the region.

In the Amravati region the 5 E = odde Aate to D Dor N for more than 50 percentross all the AAQMS, except AAQMS at Govt. College of Engineering. Two out of three AAQMS in the Akola area (Akola College of Engineering and MIDC Water Works Akola), failed to have D; c c X N U jevfen for all singleholmay; while only 5 percent of the observations days had k Y f Y W U g g ] Z ] Y X U age AAD MS at X TR college of econther cankona. The poor air quality in this region could be majorly attributed because of high RSPM levels recorded by the AAQMS the AQI for RSPM and NOx levels in the region are well within the, acceptable limits.





In the Kalyan Region all the areas recorded at least 60percent of the observation days with D; c c X  $\tilde{N} \cup J$  f ' e i U ` ] h m"  $H \setminus Y \cap A = 8.7 \cup f Y \cup g$  c Z  $5.3 \vee Y f b \cup h \setminus D$  c c f  $\tilde{N} \cup D \times \tilde{N} \oplus Y j Y f Y \tilde{N} \cup J$  f ' e i U ` ] h m"  $H \setminus Y \oplus Y \oplus V \oplus X \oplus V f b \cup h \setminus D$  for all the three pollutants,  $SONO_X$  and RSPM. In this region (Kalyan), only one AAQMS representing the sensitive area near IGM hospital recorded c caiX d uality.

 $H \setminus Y \cap H \setminus U \models Y \cap f Y [] c \models k \setminus ] W \cap ] Y \cap g \cap j Y f \cap W \cap c \cap Y; choc X \cap A \cap a \vee U$ air quality for just about 40 percent of the observation days at all the three monitoring stations. Ib D i b Y O \cap h \setminus Y \cap U f Y U \cap Y f Y Z c i b X hercent of j Y D; c the observation days, while on certain days there has been high to boost the observation. More than 60 percent of the observation days near Karve road area had air quality in the category D A c X Y f U h Y N h c D c arefas Nhave inhoredation of petroleum products.

The RO wise and type wise percentage occurrence of AQI classes for composite AQI for the AAQMS in Maharashtra have been presented in gure No. 26 and Figure No. 27. To further analyse the parameter wise, RSPN figure No. 28, NOx (Figure No. 29) and SO<sub>2</sub> (Figure No. 30, occurrence of these have been presented separately for further investigation.





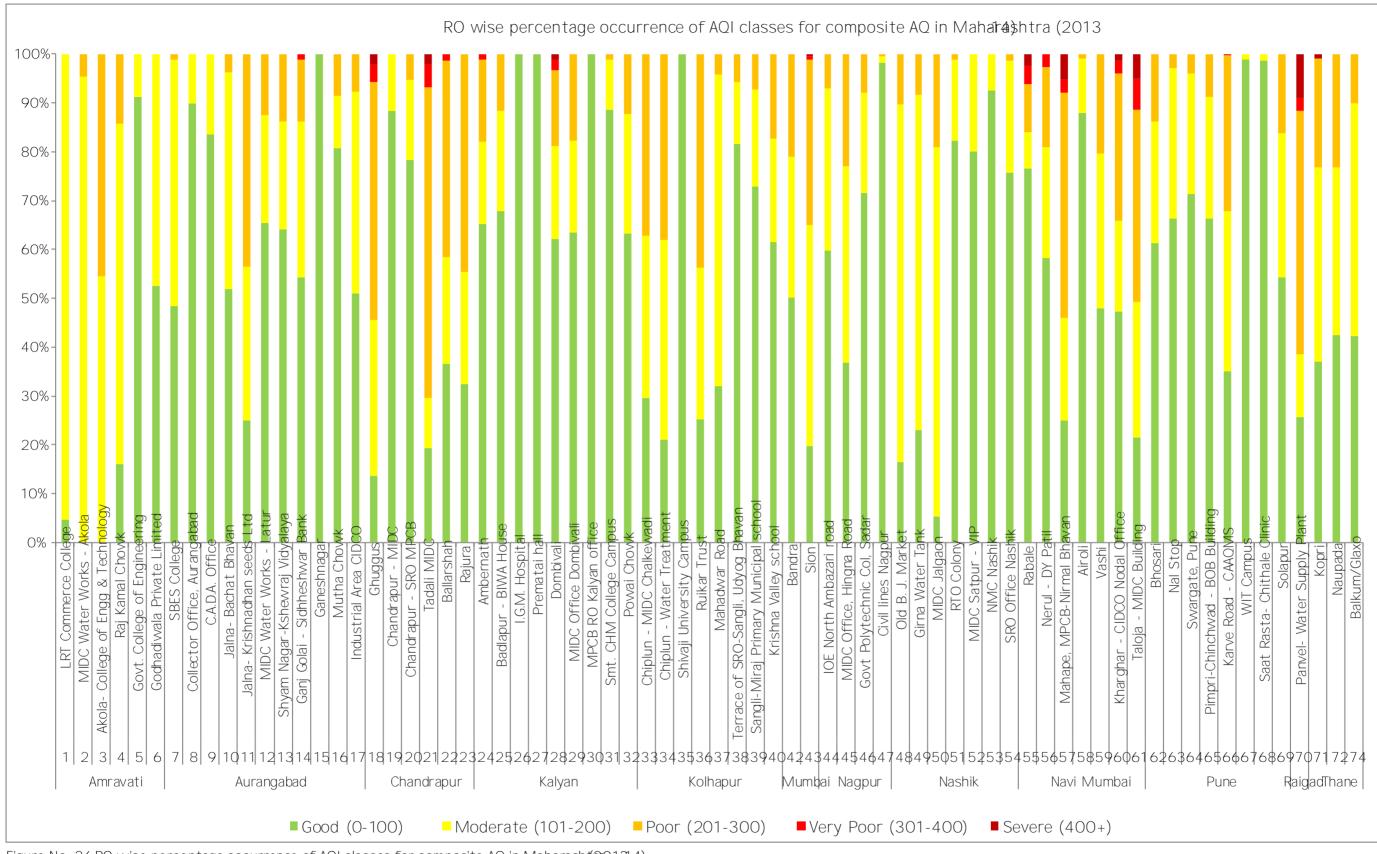
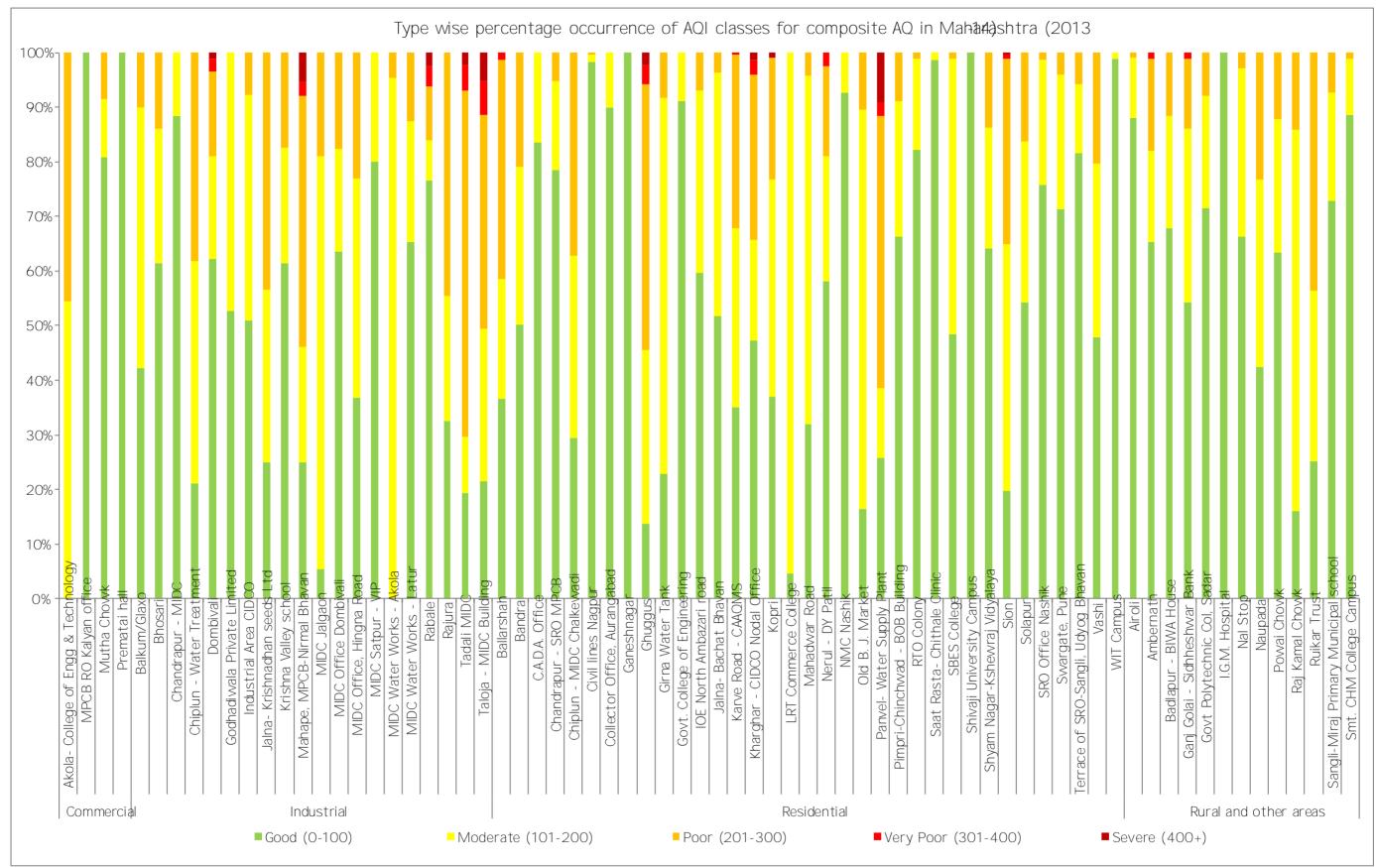
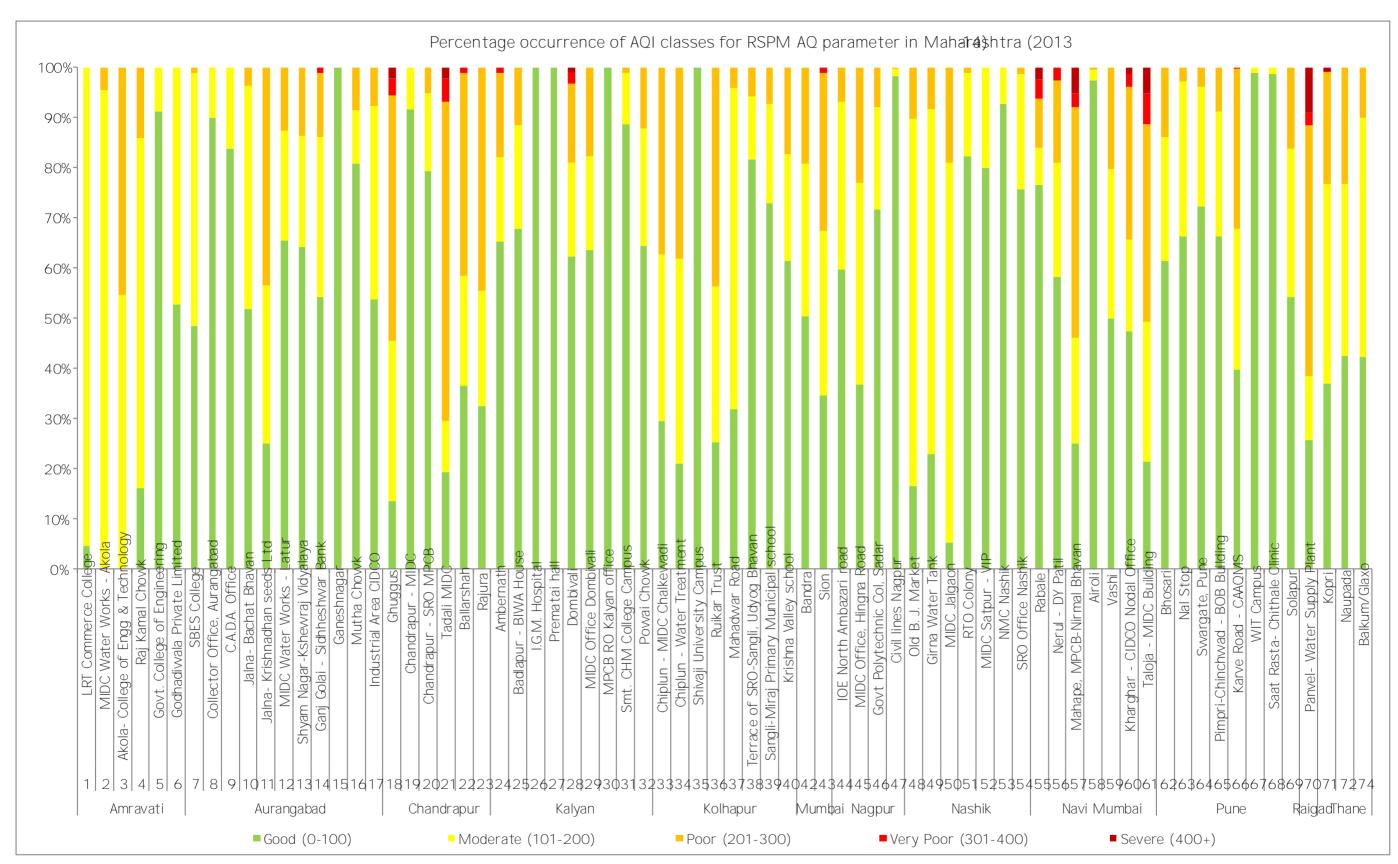




Figure No. 26 RO wise percentage occurrence of AQI classes for composite AQ in Maharash (22013) 4)


The number given here are for intermælnience. 41 ancorrections since those attributed stations where the station and a station of the station



54

Figure No. 27. Type wise percentage occurrence of AQI classes for composite AQ in Maharasht(201314)

#### Air Quality Index



55

Figure No. 28 Percentage occurrence of AQI classes for RSPM AQ parameter in Maharasht(201314)

The number given here are for internal convenience. Baramdissing since those attributed stations where the stations where the stations where the station is a static stati



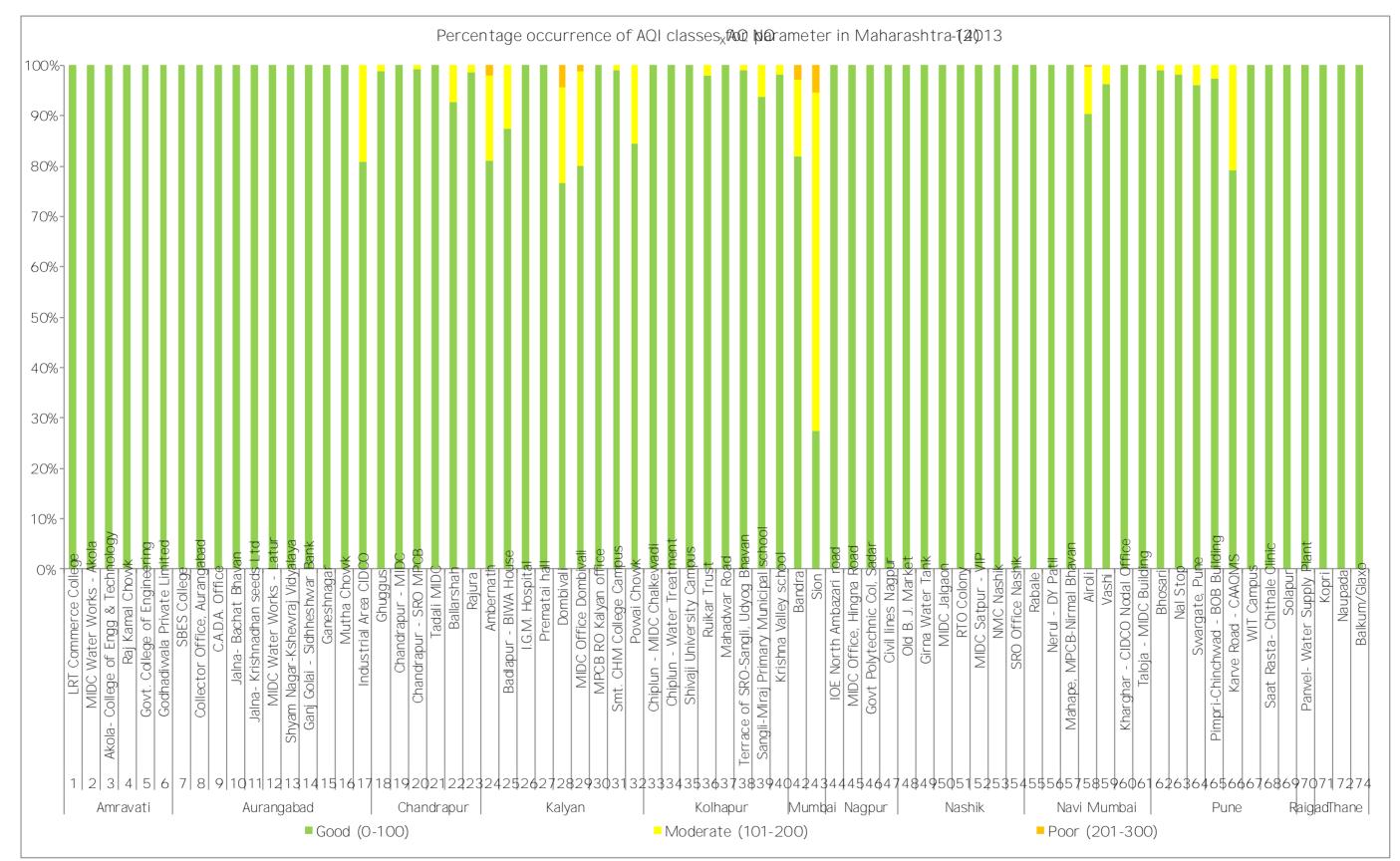
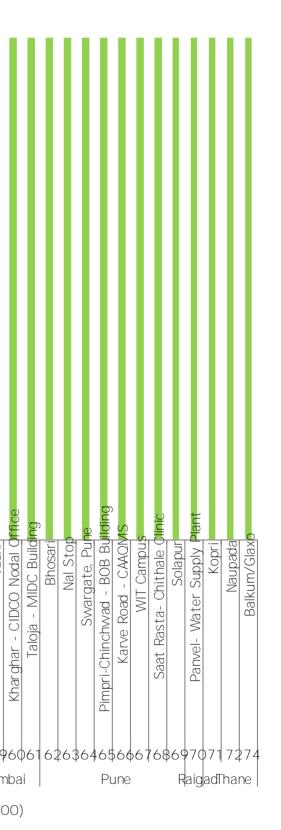



Figure No. 29 Percentage occurrence of AQI classes for NQAQ parameter in Maharashtra(2013) 4)

The number given here are for internal convenience. 3/3/amdis/sing since those attributed stations v/v/ametinomal in 20-1134




#### Air Quality Index

|      |          |            |                        |                         |                      |         |                    |               |             |                 |                                               |               |        |                 |    |            |            |     |     |         |                     |           |        |          |              |                |             |         |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        |     |         |             |        |      | _        |
|------|----------|------------|------------------------|-------------------------|----------------------|---------|--------------------|---------------|-------------|-----------------|-----------------------------------------------|---------------|--------|-----------------|----|------------|------------|-----|-----|---------|---------------------|-----------|--------|----------|--------------|----------------|-------------|---------|--------------|--------------------|------------|-----------|---------------------|---------------|----------------|--------|-----|-----------------|-------------------------------------------------|---------------|---------|------------|---------|--------|---------|------------|--------|-----|---------|-------------|--------|------|----------|
|      |          |            |                        |                         |                      |         |                    |               |             |                 |                                               |               |        |                 |    |            |            | Ρ   | er  | cer     | nta                 | ge        | 00     | CCL      | irre         | end            | ce (        | of,     | AQI          | l cl               | as         | ses       | 52 <b>A</b> (       | Ìβ            | iara           | am     | ete | er ii           | nΝ                                              | Ла            | har     | ras        | ht      | ra-    | (2      | <b>)</b> 1 | 3      |     |         |             |        |      |          |
| 100% |          | ľ          |                        |                         |                      |         |                    | I             |             |                 |                                               |               |        |                 | Ì  |            |            |     |     |         |                     |           | I      | I        |              | I              | ľ           |         |              |                    |            |           |                     | Ì             |                |        |     |                 |                                                 |               |         |            |         |        |         |            | I      | I   | ľ       | ľ           |        |      |          |
| 90%  |          |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             |         |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 80%  |          |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             | l       |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 70%  |          |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             | l       |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 60%  |          |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             | l       |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 50%  |          |            |                        |                         |                      |         |                    |               |             |                 |                                               |               |        |                 |    |            |            |     |     |         |                     |           |        |          |              |                |             |         |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        |     |         |             |        |      |          |
| 40%  |          |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             | l       |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 30%  |          |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             | l       |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 20%  | -        |            |                        |                         |                      |         |                    |               | l           | l               |                                               |               |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            | I              |             | l       |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        | I   |         |             |        |      |          |
| 10%  | -        | <u>a</u>   | ypolot<br>الا          | Ð                       | þ                    | τ       | D                  |               | -td         | ur              | /a<br>k                                       | É             |        |                 |    |            |            |     |     |         |                     |           | I      |          | I            |                | (0          |         | = + c        |                    |            |           | an                  | school        |                |        |     |                 |                                                 | F             |         |            |         |        |         |            |        | I   |         |             |        |      | L<br>L   |
| 0%   |          | , Akola    |                        | leering                 | imited               | ege     |                    | avan          |             |                 | Iyalaya<br>r Rank                             |               | X      | 8               | 2  | 2          |            | रीह | 5 0 | v f     |                     |           |        | ज        | bivali       | -              | ampu        | >       |              | eatmen             | Ď,         |           |                     |               |                | g      |     | ĔŢĊ             | rjo                                             |               |         |            |         |        |         |            |        | 0   | Y Patil | Bhava       |        | -=   | Offic    |
|      | Col      | orks -     |                        | Govt. College of Engine | ate L                | - 5     | _   5              | at Bhav       |             | <u>~</u>        | Shewraj Vidy<br>Sidhhashwar                   | Ganeshnada    | a Chov | ea CID          |    | ur - N     | - SRO M    |     |     | hernati | Badlanur - BIWA Hor | Hospit    |        | Dombival | Office Dombi |                | 9           | ai Chov | $\sigma ($   |                    |            |           | IΧ                  | unicipal      |                | Bandra |     | bazarı          | ngna                                            |               | Nay Nay | ater ]     | _   _   | Colon  |         | Nashi      | ·   _  |     | P<br>Z  |             | Airoli | Vast |          |
|      | Commerce | Water Work | of Engg &<br>Pai Kamal | e of l                  | Godhadi wala Private | SBES CO | CONECTON VITUE, AU | Jalna- Bachat | Krishnadhan | MIDC Water Work | shewr<br>dhha                                 | Unite<br>Cane | Mutha  | Industrial Area | Ū  | Chandrapur |            |     | Da  | Amhar   |                     | I.G.M. Ho | Premat |          | )ffice       | MPCB RO Kalyan | CHM College | Powai   | NIDC CN      | Chipiun - Water Ir |            | Nahadvara | of SRO-Sanali, Udvo | Primary Munic | Krishna Valley |        |     | IUE North Ambaz | WILLO UTTICE, HING<br>"as, the Dark technology" | Civil lines N |         | Girna Wate | NIDC Ia | RTO CC | C Satol | NMC N      | Office |     | Nerul - | MPCB-Nirmal |        |      |          |
|      | 1.       | Wate       |                        | Colleg                  | diwala               |         | 5 C<br>5           | alna-         | rishn       | Wat             | ar-Ks<br>- Si                                 | י<br>         |        | dustr           |    | Chan       | Chandrapur |     |     |         |                     |           | -      |          | MIDC C       | CB R           | ΣHΩ         |         | 2 ^<br>_<br> |                    |            |           | D-San               | rimar         | rishn          |        |     | North           |                                                 |               | 3       | ן יד<br>ט  | 5       | -      |         | 2          | SRO    |     | Ž       | MPC         |        |      | 1        |
|      | LRT      | MIDC       | College                | ovt. O                  | odhac                |         |                    |               | Jalna- K    | MIDO            | Naga                                          |               |        | <u>⊆</u>        |    |            | Char       |     |     |         | Bac                 | Ś         |        |          | Σ            | Z              | Smt. (      |         | Chipiun      | Cnipil<br>Shin     |            |           | f SR(               | iraj P        | $\leq$         |        |     |                 |                                                 |               |         |            |         |        |         |            |        |     |         | -           |        |      | Kharohar |
|      |          |            | Akola- Co              | G                       | Ğ                    |         | 5                  |               | Jali        | į               | Shyam Nagar-Kshewraj<br>Gani Golai - Sidhhash |               |        |                 |    |            |            |     |     |         |                     |           |        |          |              |                | S           |         |              |                    |            |           | Terrace o           | Sangli-Miraj  |                |        |     |                 |                                                 | פ             |         |            |         |        |         |            |        |     |         | Mahape      |        | :    | Khar     |
|      | 1        | 2          |                        | 1 5                     | 6                    | 7 8     | 3 9                | 10            | 11          | 12              | 131                                           | 41!           | 516    | )<br>17         | 18 | 19         | 202        | 212 | 222 | 232     | 42                  | 520       | 627    | 128      | 329          | 730            | )31         | 32      | 333          | 343                | 353        | 363       | ·                   |               |                | )42    | 434 | 444             | 154                                             | 164           | 74      | .84        | 95      | 05     | 15      | 253        | 354    | 455 | 556     | 57          | 58     | 59   | 6        |
|      |          |            | .mra                   | vati                    |                      |         |                    |               |             |                 | abac                                          |               |        |                 |    |            | anc        |     |     |         |                     |           |        | Kaly     |              |                |             |         |              |                    |            |           | pur                 |               |                |        | nba |                 |                                                 |               |         |            |         | Nas    |         |            |        |     |         |             | i Mi   |      |          |
|      |          |            |                        |                         |                      |         |                    |               |             |                 |                                               |               |        |                 |    | Go         | bod        | (0- | 10  | 0)      |                     |           |        |          |              |                |             |         |              |                    | <b>-</b> N | /lod      | era                 | te (          | (10            | 1-2    | 00) |                 |                                                 |               |         |            |         |        |         |            |        | P P | oor     | (2          | 01-    | -30  | 0        |
|      |          |            |                        |                         |                      |         |                    |               |             |                 |                                               |               |        |                 |    |            |            |     |     |         |                     |           |        |          |              |                |             |         |              |                    |            |           |                     |               |                |        |     |                 |                                                 |               |         |            |         |        |         |            |        |     |         |             |        |      | _        |

Figure No. 30 Percentage occurrence of AQI classes f&O<sub>2</sub>AQ parameter in Maharashtra(2013)(4)

The number given here are for internal convenience. 3/aramdis/sing since those attributed stations v/vamethomalni 2013/4





## Conclusion

Urbanization, industrialization, vehicular emissions, construction sector, quarrying and mining activities and so on are some of the major drivers for air pollution in Maharashtra. MPCB has been taking active initiatives for monitogi air quality and has the highest number of AAQMS under NAMP in India. As a result, MPCB records massive amount of datasets which have been used in this report to present an overview on the status of concentration for various air pollutants recorded by the taking stations which were active in the year 204134.

Out of all the measured parameters including RSPM,  $N_kOSO_2$ , CO, benzene and Ozone the main and primary pollutant was RSPM (PM) followed by NOx while the air quality for almost 42percent of the g Y f j U h ] c b g k U g Z candobalow c V Y D A c X Y f U h

RSPM was found to exceed the annual standard at 70 out of 72 AAQMS in the year42013 Areas like Chandrapur and Navi Mumbai which are influenced with industries and mining activities (quarry sites) record high levels of RSPM concentrationStrict norms for the construction sector, appropriate maintenance of roads, responsible supervision at the quarry sites and so on should be regulated to minimize the dispersion of RSPM in the air.

The annual NOx concentrations exceeded the standardat 25 AAQMS, in the year 20-1134. The NOx concentrations were found to peculiarly high in urbanized areas like Mumbai, Navi Mumbai and Pune. The Navi Mumbai area has consistently recorded high levels of NO<sub>x</sub> pollution and requires immediate attention. Traffic congestion and vehicular emissions could be attributed to increase in NO concentration in these areas.

SO<sub>2</sub> concentrations in Maharashtra are not that high and none of the AAQMS violated the annual standards. However, the MIDC areas of Ambernath, Dombivali and Badlapur, in the Kalyan Region recorded relatively higher SQ concentrations as compared to other regions of the state. Ambernath and Dombivali areas were found to violate the daily standards on certain days of the year 201-34 for SQ concentrations. A source apportionment study for the same needs to be conducted for the region, and CAAQMS need to be installed in both the areas to have continuous data on the action NO<sub>x</sub> levels in these areas.

CO and Ozone are among the 6 major pollutants commonly found intheurban environment which have the potential to harm human health and properbut the monitoring of CO and Ozone was limited to Bandra and Pune monitoring stationit was found that the relation is seasonalas well as regionbased for these two pollutants. It was observed that the CO levels in Pune were unusually high and 100 percent of the observations exceeded the CO standar, while in the Bandra areathe exceedence was about 52 percent. Ozones recorded to be of a non-polluting level in Pune but in Bandra, the level was found to be iniolation of the standard for almost 31.4 percent of the observations.

Given the fact that Maharashtra is the most urbanized and highly industrialized tes of the nation, augmenting new AAQMS to the existing network is highly desired. Rapidly developing regions and regions which are yet to have a regular AAQM stations should be prioritized. A road map must be developed to strengthen the monitoring network. Areas like Badlapur, Ulhasnagar, Chandrapur and so on which recorded high pollutant concentrations in 20184 should be considered for installing CAAQMS.

# Annex Ì I: List of AAQMS in Maharashtraì 201314

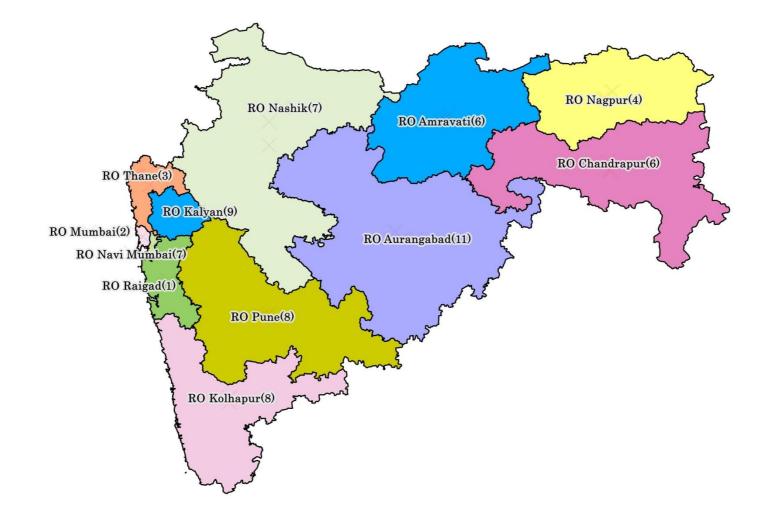
| MPCB<br>RO | Region     | Station<br>code | Station name                            | Location                                                                       | Туре                  | Program |
|------------|------------|-----------------|-----------------------------------------|--------------------------------------------------------------------------------|-----------------------|---------|
|            |            | 700             | LRT Commerce College                    | Plot No. 10 Ranpise Nagar professo<br>Colony                                   | Residential           | NAMP    |
|            | Akola      | 701             | MIDC Water Works-<br>Akola              | Phase II, MIDC                                                                 | Industrial            | NAMP    |
| A mravati  |            | 702             | Akola - College of Engg &<br>Technology | Akola                                                                          | Commercial            | NAMP    |
| mra        |            | 547             | Raj Kamal Chowk                         | Vanita Samaj Building                                                          | Rural and other areas | NAMP    |
| A          | Amravati   | 548             | Govt. College of<br>Engineering         | Terrace of Govt. Coll. Of Engi.,<br>Electronic & Computer Building<br>Amravati | Residential           | NAMP    |
|            |            | 549             | Godhadiwala Private<br>Limited          | Building of Apurva Oil Industries                                              | Industrial            | NAMP    |
|            |            | 511             | SBES College                            | SBES College Campus, Aurangabad                                                | Residential           | NAMP    |
|            | Aurangabad | 512             | Collector Office,<br>Aurangabad         | Collector Office                                                               | Residential           | NAMP    |
| bad        |            | 513             | C.A.D.A. Office                         | C.A.D.A. Office , Garkheda<br>Aurangabad                                       | Residential           | NAMP    |
| nga        |            | 706             | Jana-Bachat Bhavan                      | Bachat Bhavan Building Jalna                                                   | Residential           | NAMP    |
| Aurangabad | Jalna      | 707             | Jalna- Krishnadhan seeds<br>Ltd         | Krishna Dhan Compound Jalna                                                    | Industrial            | NAMP    |
|            | Latur      | 641             | MIDC Water Works-<br>Latur              | Latur                                                                          | Industrial            | NAMP    |
|            |            | 642             | Shyam Nagar-Kshewraj                    | Latur                                                                          | Residential           | NAMP    |

| MPCB<br>RO        | Region     | Station code | Station name                     | Location                                            | Туре                  | Program |
|-------------------|------------|--------------|----------------------------------|-----------------------------------------------------|-----------------------|---------|
|                   |            |              | Vidyalaya                        |                                                     |                       |         |
|                   |            | 643          | Ganj Golai - Sidhheshwar<br>Bank | Ganjgolai, Latur                                    | Rural and other areas | NAMP    |
|                   |            | 703          | Ganeshnagar                      | Nanded                                              | Residential           | NAMP    |
|                   | Nanded     | 704          | Mutha Chowk                      | Nanded                                              | Commercial            | NAMP    |
|                   |            | 705          | Industrial Area CIDCO            | Nanded                                              | Industrial            | NAMP    |
|                   |            | 267          | Ghuggus                          | Office of Grampanchayat Ghuggus                     | Residential           | NAMP    |
| <u>ل</u> ے        |            | 281          | Chandrapur - MIDC                | M/s Multiorganic Pvt. Ltd.<br>Chandrapur            | Industrial            | NAMP    |
| Chandrapur        | Chandrapur | 396          | Chandrapur - SRO MPCB            | Office of Nagar Parishad<br>Chandrapur Premises     | Residential           | NAMP    |
| Char              |            | 638          | Tadali MIDC                      | MIDC                                                | Industrial            | NAMP    |
| $\bigcirc$        |            | 639          | Ballarshah                       | Ballarpur                                           | Residential           | NAMP    |
|                   |            | 640          | Rajura                           | Chandrapur                                          | Industrial            | NAMP    |
|                   | Ambernath  | 445          | Ambernath                        | Ambernath Municipal Council<br>Building , Ambernath | Rural and other areas | NAMP    |
| C                 | Badlapur   |              | Badlapur - BIWA House            | BIWA Office, Badlapur                               | Rural and other areas | NAMP    |
| Kalyan            |            |              | I.G.M. Hospital                  | Bhiwandi                                            | Rural and other areas | SAMP    |
| $\mathbf{\Sigma}$ | Bhiwandi - |              | Prematai hall                    | Bhiwandi                                            | Commercial            | SAMP    |
|                   | Dombivali  | 265          | Dombivali                        | CETP, Phase-II MIDC, Dombivali                      | Industrial            | NAMP    |

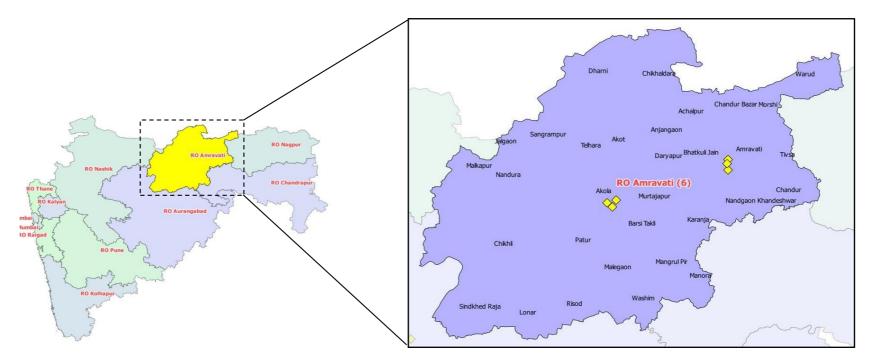
| MPCB<br>RO     | Region      | Station code | Station name                             | Location                                                    | Туре                  | Program |
|----------------|-------------|--------------|------------------------------------------|-------------------------------------------------------------|-----------------------|---------|
|                |             |              | MIDC Office Dombivali                    | Dombivali                                                   | Industrial            | SAMP    |
|                | Kalyan      |              | MPCB RO Kalyan office                    | Kalyan                                                      | Commercial            | SAMP    |
|                | Ulhasnagar  | 647          | Smt. CHM College<br>Campus               | CHM College Ulhasnagar                                      | Rural and other areas | NAMP    |
|                | e maena gan | 648          | Powai Chowk                              | Octroi Naka                                                 | Rural and other areas | NAMP    |
|                | Chiplun     | 489          | Chiplun - MIDC<br>Chalkewadi             | MIDC Chalkewadi,Chiplun                                     | Residential           | NAMP    |
|                |             | 490          | Chiplun - Water Treatmen                 | MIDC Water supply Plant Chiplun                             | Industrial            | NAMP    |
|                |             | 508          | Shivaji University Campus                | Shivaji University Campus,<br>Vidyanagar, Kolhapur          | Residential           | NAMP    |
| Kolhapur       | Kolhapur    | 509          | Ruikar Trust                             | Ruikar trust, Dhabhokar corner,<br>Kolhapur                 | Rural and other areas | NAMP    |
| Kolh           |             | 510          | Mahadwar Road                            | Near Mahalaxmi temple ,Kolhapur                             | Residential           | NAMP    |
|                |             | 574          | Terrace of SROSangli,<br>Udyog Bhavan    | Vishrambag, Sangli                                          | Residential           | NAMP    |
|                | Sangli      | 575          | Sangli-Miraj Primary<br>Municipal school | Rajawada Chowk,Sangli                                       | Rural and other areas | NAMP    |
|                |             | 576          | Krishna Valley school                    | MIDC Kupwad                                                 | Industrial            | NAMP    |
| Mumb<br>ai     | Mumbai      |              | Bandra                                   | Govt. Polytechnique.Premises<br>Kherwadi                    | Residential           | NAMP    |
| Ĩ.             |             |              | Sion                                     | Sion Hospital                                               | Residential           | NAMP    |
| Na<br>gp<br>ur | Nagpur      | 287          | IOE North Ambazari road                  | Terrace of Institute of Engineering,<br>North Ambazani road | Residential           | NAMP    |






| MPCB<br>RO | Region         | Station code | Station name                     | Location                                        | Туре                  | Program |
|------------|----------------|--------------|----------------------------------|-------------------------------------------------|-----------------------|---------|
|            |                | 288          | MIDC Office, Hingna Road         | MIDC office Hingna Road Nagpur                  | Industrial            | NAMP    |
|            |                | 314          | Govt Polytechnic Col,<br>Sadar   | Govt. poly technique College ,<br>Sadar, Nagpur | Rural and other areas | NAMP    |
|            |                | 711          | Civil lines Nagpur               | RO Office Nagpur Premises                       | Residential           | NAMP    |
|            |                | 644          | Old B. J. Market                 | Terrace of SRO building                         | Residential           | NAMP    |
|            | Jalgaon        | 645          | Girna Water Tank                 | Ramanand Nagar                                  | Residential           | NAMP    |
|            |                | 646          | MIDC Jalgaon                     | Terrace of MIDC Office                          | Industrial            | NAMP    |
| Nashik     | shik           |              | RTO Colony                       | RTO Colony Water Tank near Golf<br>Club Nashik  | Residential           | NAMP    |
| Z          | Nashik         | 269          | MIDC Satpur - VIP                | VIP industries Itd, MIDC satpur,<br>Nashik      | Industrial            | NAMP    |
|            |                | 280          | NMC Nashik                       | Nashik Municipal Council Building ,<br>Nashik   | Residential           | NAMP    |
|            |                | 710          | SRO Office Nashik                | Udyog Bhavan                                    | Residential           | NAMP    |
|            |                | 491          | Rabale                           | T.B.I.A, Rabale                                 | Industrial            | NAMP    |
|            |                | 492          | Nerul - DY Patil                 | Dr.D.Y. Patil College Building Nerul            | Residential           | NAMP    |
| umbai      | Navi<br>Mumbai |              | Mahape, MPCB-Nirmal<br>Bhavan    | Central lab Building, MPCB Navi<br>Mumbai       | Industrial            | NAMP    |
| Z<br>z     |                |              | Airoli                           | Airoli fire station                             | Rural and other areas | NAMP    |
| Nav        |                |              | Vashi                            | Fire Brigade compound, Vashi.                   | Residential           | NAMP    |
|            | Taloja         | 494          | Kharghar - CIDCO Nodal<br>Office | Nimisha Hospital Sec-12 ,Kharghar               | Residential           | NAMP    |

| MPCB<br>RO     | Region  | Station code | Station name                        | Location                                                                  | Туре                  | Program |
|----------------|---------|--------------|-------------------------------------|---------------------------------------------------------------------------|-----------------------|---------|
|                |         | 496          | Taloja - MIDC Building              | MIDC Common Facility Building                                             | Industrial            | NAMP    |
|                |         | 312          | Bhosari                             | Maratha Chamber of commerce<br>Building terrace                           | Industrial            | NAMP    |
|                |         | 379          | Nal Stop                            | MSEB Office Nal StopPune                                                  | Rural and other areas | NAMP    |
|                | Pune    | 381          | Swargate Pune                       | Terrace of Swargate police Chowk                                          | Residential           | NAMP    |
| Pune           |         | 708          | Pimpri -Chinchwad - BOB<br>Building | Pimpri -Chinchwad Municipal corporation                                   | Residential           | NAMP    |
| Pu             |         |              | Karve Road - CAAQMS                 | PMC Zonal office                                                          | Residential           | NAMP    |
|                |         | 299          | WIT Campus                          | WIT Campus Ashok Cha wk,<br>Solapur                                       | Residential           | NAMP    |
|                | Solapur | 300          | Saat RastaChithale Clinic           | Saat Rasta Opp. ST Bus stand,<br>Chitale Clinic Solapur                   | Residential           | NAMP    |
|                |         |              | Solapur                             | Municipal Corporation Premises                                            | Residential           | NAMP    |
| Ra<br>iga<br>d | Panvel  | 495          | Panvel-Water Supply<br>Plant        | Panvel Water Supply Behind ST<br>Stand                                    | Residential           | NAMP    |
|                |         | 303          | Kopri                               | Old Thane Maternity Hospital ,<br>Kopri, Thane                            | Residential           | NAMP    |
| Ð              | Ð       |              | Naupada                             | Thane M.C. Regional Office<br>Naupada ,Shahu Market , Thane               | Rural and other areas | NAMP    |
| Thane          |         | 305          | Kolshet                             | M/s Clariant (chemica unit)Kolshet<br>Thane                               | Industrial            | NAMP    |
|                |         |              | Balkum/Glaxo                        | Industrial Premises of Glaxo<br>Company, Pokharan Road No.2,<br>Thane (W) | Industrial            | NAMP    |






## Annex Ì II: Data recorded by AAQMS in Maharashtra 201314



## RO Ì Amravati



| MPCB RO  | Region   | Station | Station name                         | Туре                  | Latitude (deg)  | Longitude (deg) |
|----------|----------|---------|--------------------------------------|-----------------------|-----------------|-----------------|
|          |          | code    |                                      |                       |                 |                 |
|          | Akola    | 700     | LRT Commerce College                 | Residential           | 20° 41' 01.2" N | 77°02'43.5"E    |
|          | Akola    | 701     | MIDC Water Works-Akola               | Industrial            | 20° 41' 12.1" N | 77° 02' 20.1" E |
| Amrovati | Akola    | 702     | Akola - College of Engg & Technology | Commercial            | 20° 42' 16.6" N | 77° 05' 35.9" E |
| Amravati | Amravati | 547     | Raj Kamal Chowk                      | Rural and other areas | 20° 55' 42.4" N | 77° 45' 14.2" E |
|          | Amravati | 548     | Govt. College of Engineering         | Residential           | 20° 57' 14.8" N | 77° 45' 35.3" E |
|          | Amravati | 549     | Godhadiwala Private Limited          | Industrial            | 20° 53' 20.9" N | 77° 45' 32.0" E |

### Akola - LRT Commerce College

| FY     | N       | Mont                                        | :hly average (µg/m) |      |  |  |  |
|--------|---------|---------------------------------------------|---------------------|------|--|--|--|
| 201314 | IN      | RSPM                                        | NO x                | SO 2 |  |  |  |
| Apr    | 2       | 148                                         | 10                  | 9    |  |  |  |
| May    |         |                                             |                     |      |  |  |  |
| Jun    |         |                                             |                     |      |  |  |  |
| Jul    |         |                                             |                     |      |  |  |  |
| Aug    | 6       | 99                                          | 2                   | 7    |  |  |  |
| Sep    | 9       | 113                                         | 0                   | 7    |  |  |  |
| Oct    | 9       | 110                                         | 0                   | 6    |  |  |  |
| Nov    | 8       | 123                                         | 0                   | 6    |  |  |  |
| Dec    | 10      | 125                                         | 1                   | 7    |  |  |  |
| Jan    | 8       | 130                                         | 0                   | 7    |  |  |  |
| Feb    | 8       | 134                                         | 10                  | 8    |  |  |  |
| Mar    | 6       | 137                                         | 10                  | 8    |  |  |  |
|        | Total N | % of exceedence of daily readings for 20134 |                     |      |  |  |  |
|        | 66      | 95.5                                        | 0.0                 | 0.0  |  |  |  |

Table No. 19. Data for monthly average reading recorded dtRT Commerce College .- Akola

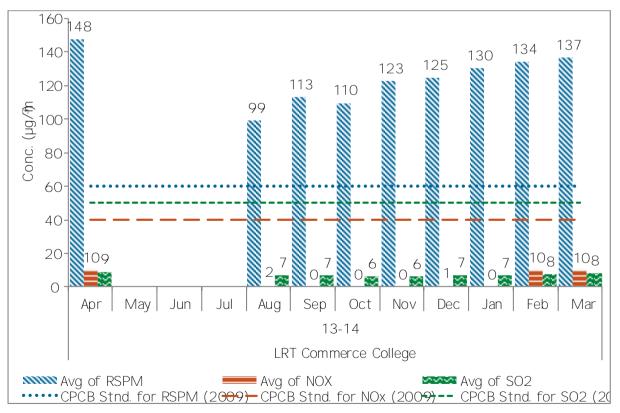



Figure No. 31: Monthly average reading recorded at LRT Commerce Collageì Akola



| Year            | Ν   | Anr  | nual average (µg/m | 1 <sup>3</sup> ) |
|-----------------|-----|------|--------------------|------------------|
|                 |     | RSPM | NO x               | SO <sub>2</sub>  |
| Annual Standard |     | 60   | 40                 | 50               |
| 0405            |     |      |                    |                  |
| 0506            |     |      |                    |                  |
| 0607            |     |      |                    |                  |
| 07-08           |     |      |                    |                  |
| 0809            |     |      |                    |                  |
| 0910            | 24  | 87   | 2                  | 6                |
| 10-11           | 88  | 107  | 3                  | 6                |
| 11-12           | 86  | 125  | 7                  | 7                |
| 12-13           | 102 | 126  | 8                  | 8                |
| 13-14           | 66  | 122  | 3                  | 7                |

Table No. 20 Data for annual average trend of RSPM, NQ and SO\_atLRT Commerce College .- Akola



Figure No. 32 An nual average trend of SQ NO  $_{\rm X}$  and RSPM at LRT Commerce Collage. -Akola





#### Akola - MIDC Water Works

| Table No. 21: Data for monthly average | ge reading recorded attIDC Water WorksAkola |
|----------------------------------------|---------------------------------------------|
|----------------------------------------|---------------------------------------------|

| FY     | N       | Мо            | nthly average (µg/m  | ٩)                  |
|--------|---------|---------------|----------------------|---------------------|
| 201314 | IN      | RSPM          | NO x                 | SO 2                |
| Apr    | 1       | 157           | 14                   | 12                  |
| May    |         |               |                      |                     |
| Jun    |         |               |                      |                     |
| Jul    |         |               |                      |                     |
| Aug    | 7       | 122           | 4                    | 8                   |
| Sep    | 8       | 123           | 1                    | 7                   |
| Oct    | 10      | 125           | 5                    | 8                   |
| Nov    | 8       | 130           | 1                    | 7                   |
| Dec    | 8       | 140           | 10                   | 8                   |
| Jan    | 10      | 148           | 10                   | 9                   |
| Feb    | 8       | 149           | 13                   | 12                  |
| Mar    | 5       | 148           | 13                   | 11                  |
|        | Total N | % of exceeder | nceof daily readings | for 201 <i>3</i> 14 |
|        | 65      | 100.0         | 0.0                  | 0.0                 |

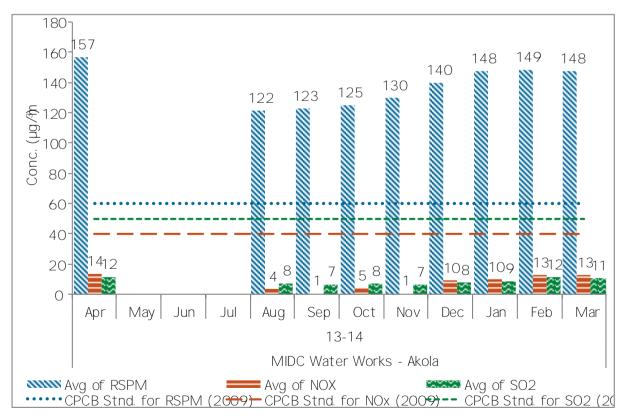



Figure No. 33 Monthly average reading recorded at MIDC Water WorksAkola





| Year            | Ν   | Ann  | ua I average (µg/r | (P)             |
|-----------------|-----|------|--------------------|-----------------|
|                 |     | RSPM | NO x               | SO <sub>2</sub> |
| Annual Standard |     | 60   | 40                 | 50              |
| 0405            |     |      |                    |                 |
| 05-06           |     |      |                    |                 |
| 0607            |     |      |                    |                 |
| 07-08           |     |      |                    |                 |
| 0809            |     |      |                    |                 |
| 0910            | 1   | 88   | 10                 | 8               |
| 10-11           | 84  | 131  | 7                  | 9               |
| 11-12           | 94  | 141  | 11                 | 10              |
| 12-13           | 110 | 142  | 11                 | 10              |
| 13-14           | 65  | 136  | 7                  | 9               |

Table No. 22 Data for annual average trend of RSPM, NQand SO2atMIDC Water Works .- Akola

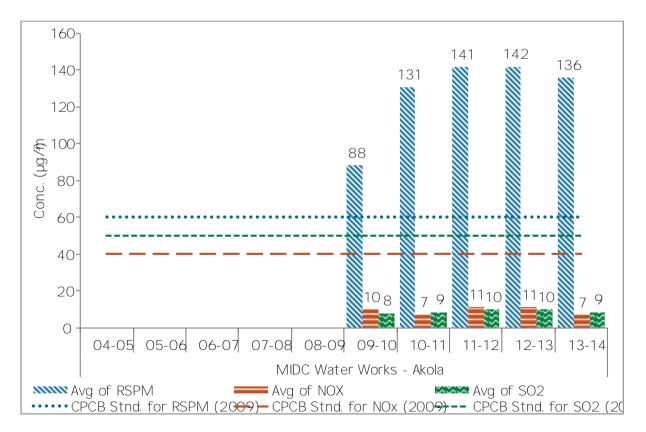



Figure No. 34 Annual average trend of SO<sub>2</sub>, NO xand RSPM at MIDC Water Works.-Akola





#### Akola - Akola College of Engg & Technology

Table No. 23 Data for monthly average reading recorded a college of Engg & Technology Ako la (Architecture Branch) Akola

| FY                                       | Ν       | Мо            | nthly average (µg/m)   |                 |
|------------------------------------------|---------|---------------|------------------------|-----------------|
| 201314                                   | IN      | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr                                      | 2       | 168           | 12                     | 10              |
| May                                      |         |               |                        |                 |
| Jun                                      |         |               |                        |                 |
| Jul                                      |         |               |                        |                 |
| Aug                                      | 8       | 130           | 7                      | 8               |
| Sep                                      | 8       | 137           | 2                      | 7               |
| Oct                                      | 8       | 139           | 1                      | 7               |
| Nov                                      | 10      | 143           | 0                      | 6               |
| Dec                                      | 8       | 152           | 5                      | 7               |
| Jan                                      | 9       | 160           | 10                     | 8               |
| Feb                                      | 8       | 166           | 10                     | 9               |
| Mar                                      | 5       | 170           | 11                     | 10              |
|                                          | Total N | % of exceeder | nceof daily readings f | for 201314      |
| 66         100.0         0.0         0.0 |         |               |                        | 0.0             |

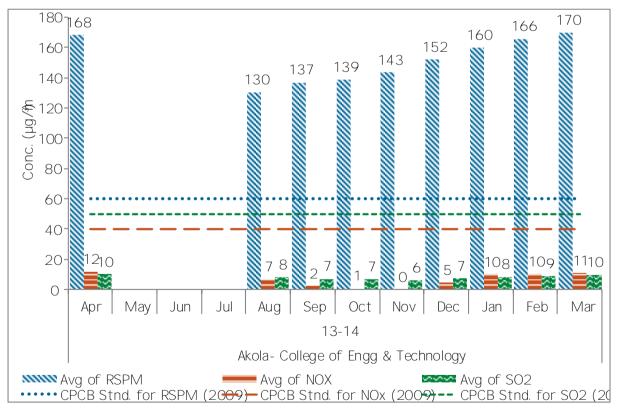



Figure No. 35 Monthly average reading recorded at Collage of Eng. And Technology Akola (Architecture Branch)Akola





| Year            | Ν               | An   | nual average (µg/r | m³)             |
|-----------------|-----------------|------|--------------------|-----------------|
|                 |                 | RSPM | NO x               | SO <sub>2</sub> |
| Annual Standard | Annual Standard |      | 40                 | 50              |
| 0405            |                 |      |                    |                 |
| 0506            |                 |      |                    |                 |
| 0607            |                 |      |                    |                 |
| 07-08           |                 |      |                    |                 |
| 0809            |                 |      |                    |                 |
| 0910            | 26              | 117  | 2                  | 6               |
| 10-11           | 74              | 142  | 5                  | 7               |
| 11-12           | 92              | 150  | 9                  | 9               |
| 12-13           | 97              | 151  | 8                  | 9               |
| 13-14           | 66              | 149  | 6                  | 8               |

Table No. 24 Data for annual average trend of  $O_2NO_x$  and RSPM atCollege of Engg & Technology Akola (Architecture Branch) Akola

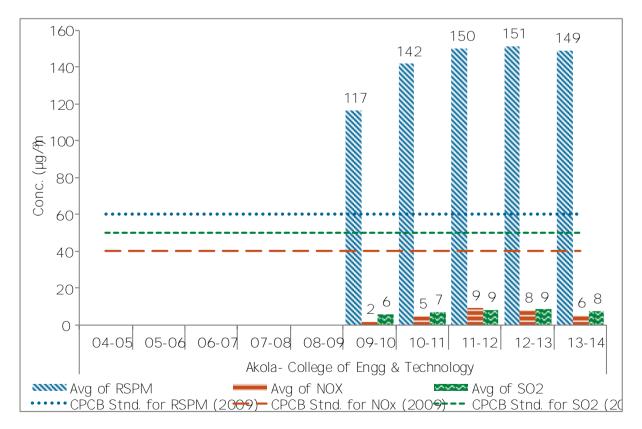



Figure No. 36 Annual average trend of SO\_2NO  $_{\rm X}$  and RSPM at Collage of Eng And Technology Akola (Archi tecture Branch)Akola





#### Amravati - Raj Kamal Chowk

Table No. 25 Data for monthly average reading recorded Raj Kamal Chowk, Amravati

| FY     | Ν       | Мо              | nthly average (µg/m  | ٩)              |
|--------|---------|-----------------|----------------------|-----------------|
| 201314 | N –     | RSPM            | NO x                 | SO <sub>2</sub> |
| Apr    | 8       | 143             | 15                   | 13              |
| May    | 9       | 152             | 17                   | 15              |
| Jun    | 9       | 117             | 11                   | 10              |
| Jul    | 7       | 102             | 11                   | 10              |
| Aug    | 9       | 114             | 11                   | 11              |
| Sep    | 7       | 108             | 11                   | 11              |
| Oct    | 17      | 107             | 12                   | 11              |
| Nov    | 9       | 141             | 14                   | 12              |
| Dec    | 8       | 144             | 14                   | 12              |
| Jan    | 9       | 146             | 14                   | 12              |
| Feb    | 6       | 134             | 13                   | 12              |
| Mar    | 8       | 146             | 11                   | 14              |
|        | Total N | % of exceeder   | nceof daily readings | for 201314      |
|        | 106     | 06 85.8 0.0 0.0 |                      |                 |

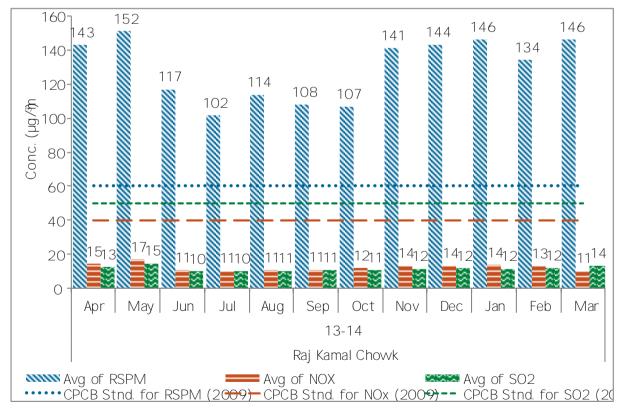



Figure No. 37. Monthly average reading recorded at Raj Kamal Chowk, Amravati



| Year            | Ν               | Annual average (µg/m³) |      |                 |  |
|-----------------|-----------------|------------------------|------|-----------------|--|
|                 |                 | RS PM                  | NO x | SO <sub>2</sub> |  |
| Annual Standard | Annual Standard |                        | 40   | 50              |  |
| 0405            |                 |                        |      |                 |  |
| 0506            |                 |                        |      |                 |  |
| 0607            | 43              | 79                     | 19   | 13              |  |
| 07-08           | 94              | 78                     | 16   | 11              |  |
| 0809            | 98              | 100                    | 15   | 12              |  |
| 0910            | 104             | 125                    | 16   | 14              |  |
| 10-11           | 104             | 146                    | 15   | 13              |  |
| 11-12           | 102             | 108                    | 18   | 15              |  |
| 12-13           | 112             | 109                    | 13   | 12              |  |
| 13-14           | 106             | 128                    | 13   | 12              |  |

Table No. 26 Data for annual average trend of RSPM, NQ and SO2 at Raj Kamal Chowk , Amravati

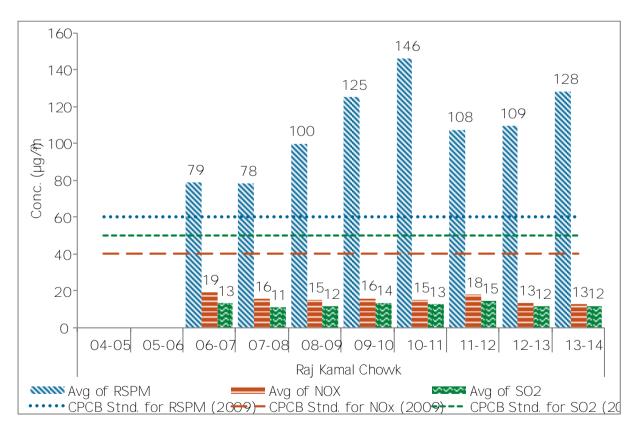



Figure No. 38 Annual average trend of SO<sub>2</sub>, NO  $_{\rm X}$  and RSPM at Raja Kamal Chowk, Amravati



#### Amravati - Govt. College of Engineering

Table No. 27. Data for monthly average reading recorded abovt. College of Engineering Amr avati

| FY                 | Ν       | Mon           | thly average (µg/m)    |                 |
|--------------------|---------|---------------|------------------------|-----------------|
| 201314             | IN IN   | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr                | 9       | 92            | 13                     | 12              |
| May                | 7       | 96            | 14                     | 12              |
| Jun                | 6       | 80            | 12                     | 10              |
| Jul                | 5       | 65            | 10                     | 9               |
| Aug                | 3       | 55            | 8                      | 8               |
| Sep                | 4       | 73            | 9                      | 9               |
| Oct                |         |               |                        |                 |
| Nov                | 5       | 73            | 12                     | 10              |
| Dec                | 4       | 81            | 13                     | 11              |
| Jan                | 9       | 79            | 12                     | 11              |
| Feb                | 7       | 73            | 11                     | 10              |
| Mar                | 9       | 84            | 12                     | 11              |
|                    | Total N | % of exceeden | ceof daily readings fo | or 201314       |
| 68     8.8     0.0 |         |               | 0.0                    | 0.0             |

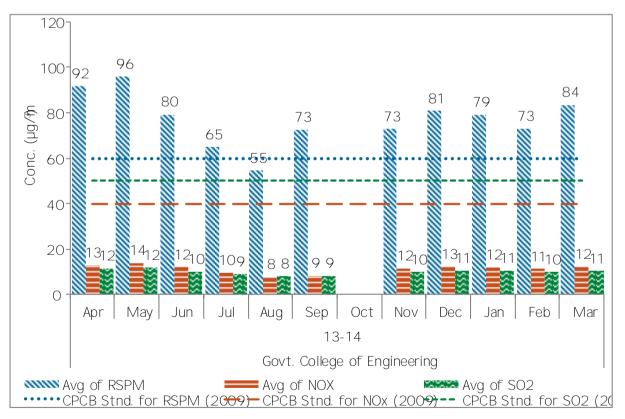



Figure No. 39Monthly average reading recorded at Govt. Collage of Engineering Amravati





| Year            | Ν               | Annual average (µg/m³) |      |      |  |
|-----------------|-----------------|------------------------|------|------|--|
|                 |                 | RSPM                   | NO x | SO 2 |  |
| Annual Standard | Annual Standard |                        | 40   | 50   |  |
| 0405            |                 |                        |      |      |  |
| 0506            |                 |                        |      |      |  |
| 0607            | 38              | 50                     | 12   | 10   |  |
| 07-08           | 98              | 40                     | 8    | 8    |  |
| 0809            | 99              | 47                     | 10   | 8    |  |
| 0910            | 104             | 78                     | 12   | 10   |  |
| 10-11           | 101             | 79                     | 13   | 10   |  |
| 11-12           | 95              | 79                     | 12   | 10   |  |
| 12-13           | 95              | 80                     | 12   | 11   |  |
| 13-14           | 68              | 80                     | 12   | 10   |  |

Table No. 28 Data for annual average tren  $d\!dst{fSO}_2$  NO  $_x$  and RSPM at Govt. College of Engineering Amravati

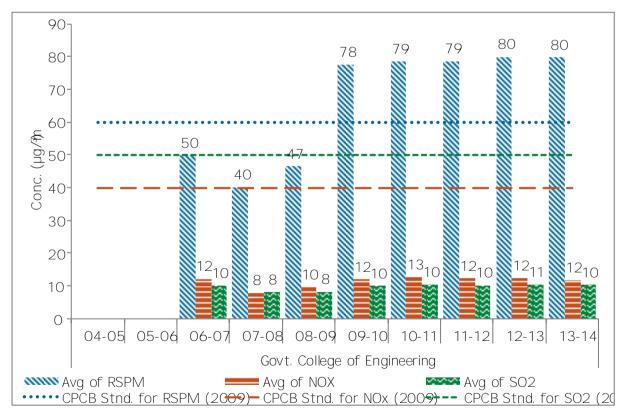



Figure No. 40Annual average trend of SO $_{\!\!2}$  NO  $_{\!X}$  and RSPM atGovt Collage of Engineering. - Amravati



#### Amravati - Godhadivvala Private Limited

Table No. 29 Data for monthly average reading recorded and advala Private Limited

| FY          | Ν       | Mor                                          | nthly average (µg/m) |                 |
|-------------|---------|----------------------------------------------|----------------------|-----------------|
| 201314      | I N     | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr         | 9       | 131                                          | 14                   | 12              |
| May         | 9       | 132                                          | 16                   | 15              |
| Jun         | 6       | 87                                           | 11                   | 11              |
| Jul         | 8       | 63                                           | 8                    | 9               |
| Aug         | 8       | 65                                           | 9                    | 11              |
| Sep         | 8       | 85                                           | 12                   | 11              |
| Oct         | 8       | 79                                           | 11                   | 11              |
| Nov         | 7       | 87                                           | 12                   | 11              |
| Dec         | 7       | 83                                           | 12                   | 11              |
| Jan         | 9       | 106                                          | 15                   | 13              |
| Feb         | 8       | 104                                          | 13                   | 11              |
| Mar         | 8       | 92                                           | 12                   | 11              |
|             | Total N | % of exceedence of daily readings for 201314 |                      | for 201314      |
| 95 47.4 0.0 |         |                                              | 0.0                  |                 |

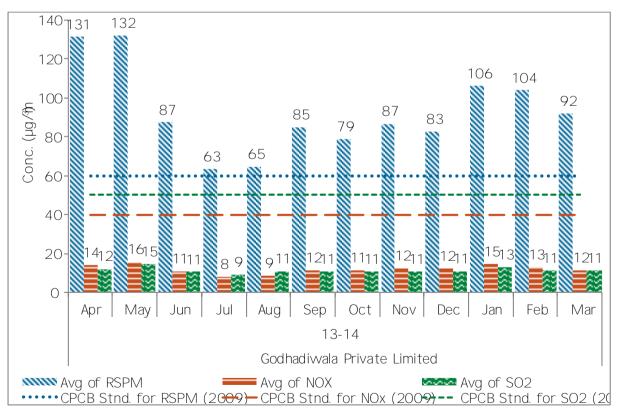



Figure No. 41: Monthly average reading recorded at Godhadivvala Pravate Limited Amravati





| Year            | Ν   | Annual average (µg/m³) |      |                 |  |
|-----------------|-----|------------------------|------|-----------------|--|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |  |
| Annual Standard |     | 60                     | 40   | 50              |  |
| 0405            |     |                        |      |                 |  |
| 0506            |     |                        |      |                 |  |
| 0607            | 40  | 67                     | 16   | 12              |  |
| 07-08           | 98  | 58                     | 12   | 9               |  |
| 0809            | 98  | 71                     | 13   | 10              |  |
| 0910            | 103 | 102                    | 14   | 12              |  |
| 10-11           | 84  | 125                    | 14   | 12              |  |
| 11-12           | 98  | 100                    | 13   | 11              |  |
| 12-13           | 104 | 101                    | 13   | 12              |  |
| 13-14           | 95  | 94                     | 12   | 11              |  |

Table No. 30 Data for annual average trend of RSPM, NQ and SO2 at Godhadiwala Private Limited

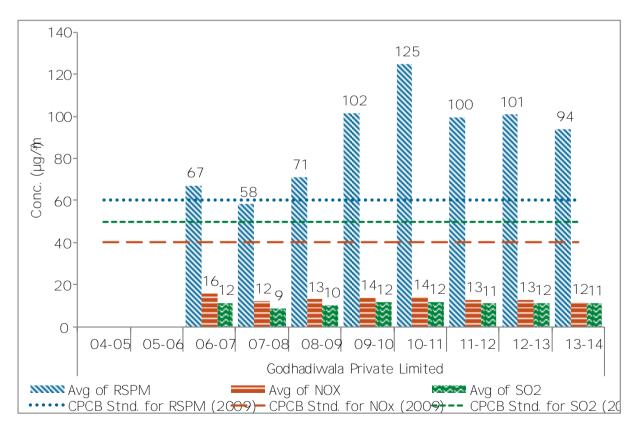



Figure No. 42 Annual average trend of SO $_{\!\!2}$  NO  $_{\!X}$  and RSPM atGodhadiw ala Pravate Limited Amravati



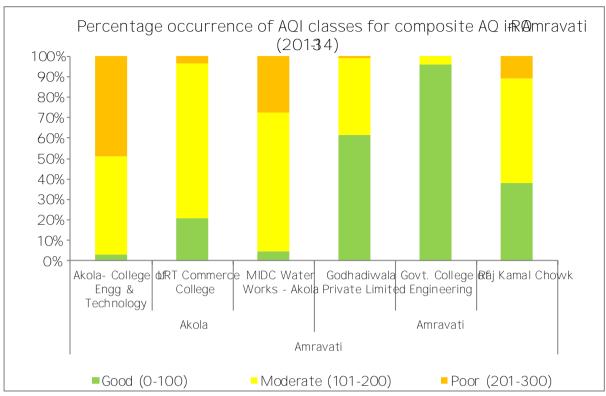



Figure No. 43 Percentage occurrence of AQI classes for composite AQ in AmravaRO (201314)





# RO Ì Aurangabad



| MPCB RO    | Region     | Station code | Station name                   | Туре                  | Latitude (deg)  | Longitude (deg) |
|------------|------------|--------------|--------------------------------|-----------------------|-----------------|-----------------|
|            | Aurangabad | 511          | SBES College                   | Residential           | 19° 52' 54.9" N | 75° 19' 33.7" E |
|            | Aurangabad | 512          | Collector Office, Aurangabad   | Residential           | 19° 53' 58.4" N | 75° 19' 14.2" E |
|            | Aurangabad | 513          | C.A.D.A. Office                | Residential           | 19° 52' 14.3" N | 75° 2103.5" E   |
|            | Jalna      | 706          | Jalna-Bachat Bhavan            | Residential           | 19° 50' 26.4" N | 75° 52' 17.4" E |
|            | Jalna      | 707          | Jalna-Krishnadhan seeds Ltd    | Industrial            | 19° 51' 04.3" N | 75° 51' 14.4" E |
| Aurangabad | Latur      | 641          | MIDC Water Works - Latur       | Industrial            | 18° 24' 53.0" N | 76° 32' 49.4" E |
|            | Latur      | 642          | Shyam Nagar-Kshewraj Vidyalaya | Residential           | 18° 24' 21.6" N | 76° 33' 50.2" E |
|            | Latur      | 643          | Ganj Golai -Sidhheshwar Bank   | Rural and other areas | 18° 23' 58.0" N | 76° 35' 02.6" E |
|            | Nanded     | 703          | Ganeshnagar                    | Residential           | 19° 10' 16.3" N | 77° 17' 56.3" E |
|            | Nanded     | 704          | Mutha Chowk                    | Commercial            | 19° 09' 16.8" N | 77° 18' 34.9" E |
|            | Nanded     | 705          | Industrial Area CIDCO          | Industrial            | 19° 05' 48.2" N | 77° 19' 17.9" E |

### Aurangabad - SBES College

| FY     | Ν       | Mor           | nthly average (µg/m)   |            |
|--------|---------|---------------|------------------------|------------|
| 201314 | IN      | RSPM          | NO x                   | SO 2       |
| Apr    | 8       | 130           | 37                     | 11         |
| May    | 9       | 126           | 30                     | 8          |
| Jun    | 9       | 79            | 36                     | 8          |
| Jul    | 8       | 78            | 33                     | 8          |
| Aug    | 7       | 75            | 32                     | 8          |
| Sep    | 8       | 84            | 31                     | 8          |
| Oct    | 8       | 83            | 35                     | 9          |
| Nov    | 10      | 95            | 44                     | 11         |
| Dec    | 8       | 115           | 51                     | 16         |
| Jan    | 9       | 114           | 51                     | 19         |
| Feb    | 8       | 132           | 48                     | 17         |
| Mar    | 5       | 114           | 43                     | 14         |
|        | Total N | % of exceeder | nceof daily readings f | For 201314 |
|        | 97      | 51.5          | 0.0                    | 0.0        |

Table No. 31: Data for monthly average reading recorded & BES College -Aurngabad

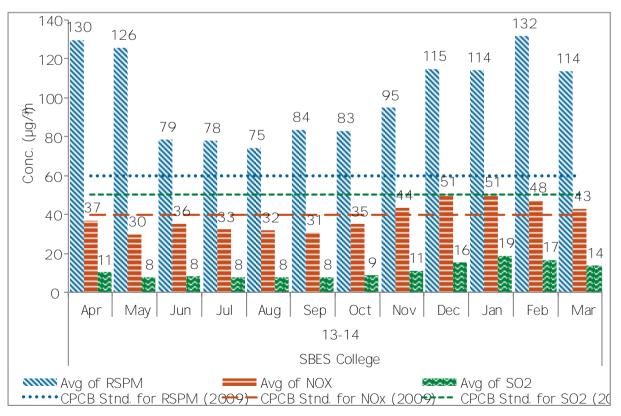



Figure No. 44 Monthly average reading recorded at SBES Colege -Aurangabad



| Year            | Ν               | Annual average (µg/m³) |      |      |  |
|-----------------|-----------------|------------------------|------|------|--|
|                 |                 | RSPM                   | NO x | SO 2 |  |
| Annual Standard | Annual Standard |                        | 40   | 50   |  |
| 0405            |                 |                        |      |      |  |
| 0506            | 35              | 166                    | 30   | 7    |  |
| 0607            | 83              | 85                     | 18   | 6    |  |
| 07-08           | 101             | 79                     | 22   | 6    |  |
| 0809            | 104             | 94                     | 22   | 9    |  |
| 0910            | 101             | 98                     | 25   | 7    |  |
| 10-11           | 95              | 94                     | 23   | 7    |  |
| 11-12           | 105             | 90                     | 33   | 9    |  |
| 12-13           | 111             | 93                     | 33   | 10   |  |
| 13-14           | 97              | 102                    | 39   | 11   |  |

Table No. 32 Data for annual average trend of SO  $_{\rm 2}$  NO  $_{\rm X}$  and RSPM, at SBES College  $\,$  -Aurngabad  $\,$ 

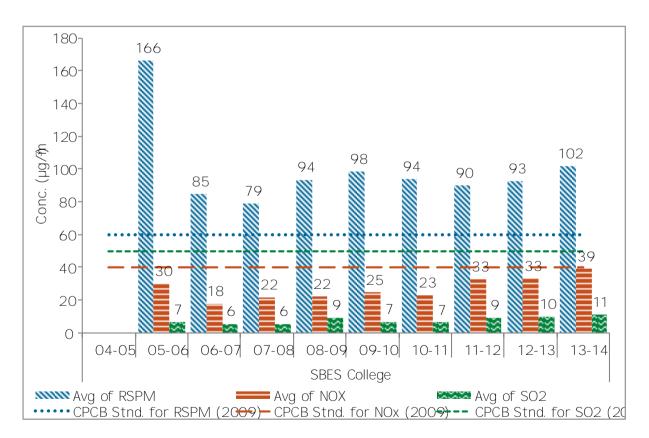



Figure No. 45 Annual average trend of SO<sub>2</sub>, NOx and RSPM at SBESColle gel Aurangabad



#### Aurangabad - Collector Office, Aurangabad

Table No. 33 Data for monthly average reading recorded atollector Office, Aurangabad

| FY          | NI      | Mor                                          | nthly average (µg/m) |                 |
|-------------|---------|----------------------------------------------|----------------------|-----------------|
| 201314      | N -     | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr         | 10      | 91                                           | 34                   | 8               |
| May         | 8       | 78                                           | 31                   | 7               |
| Jun         | 8       | 50                                           | 30                   | 7               |
| Jul         | 9       | 57                                           | 30                   | 7               |
| Aug         | 8       | 68                                           | 29                   | 6               |
| Sep         | 9       | 72                                           | 28                   | 7               |
| Oct         | 9       | 81                                           | 32                   | 8               |
| Nov         | 8       | 86                                           | 44                   | 12              |
| Dec         | 10      | 100                                          | 45                   | 13              |
| Jan         | 8       | 87                                           | 43                   | 14              |
| Feb         | 8       | 100                                          | 43                   | 13              |
| Mar         | 4       | 74                                           | 40                   | 10              |
|             | Total N | % of exceedence of daily readings for 201314 |                      | for 201314      |
| 99 10.1 0.0 |         | 0.0                                          |                      |                 |

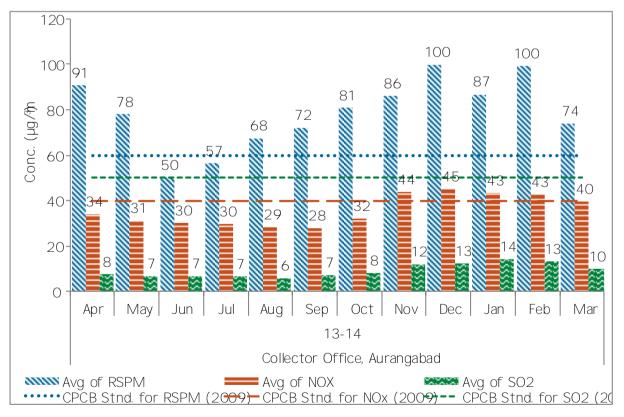



Figure No. 46 Monthly average reading recorded at Collector Office, Aurangabd



| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            | 34  | 108                    | 19   | 6    |
| 0607            | 87  | 73                     | 13   | 4    |
| 07-08           | 100 | 56                     | 16   | 5    |
| 0809            | 96  | 68                     | 20   | 8    |
| 0910            | 101 | 85                     | 22   | 6    |
| 10-11           | 100 | 69                     | 22   | 6    |
| 11-12           | 104 | 92                     | 29   | 8    |
| 12-13           | 101 | 76                     | 31   | 9    |
| 13-14           | 99  | 79                     | 36   | 9    |

Table No. 34 Data for annual average trend of RSPM, NQ and SO\_2 at Collector Office, Aurangabad

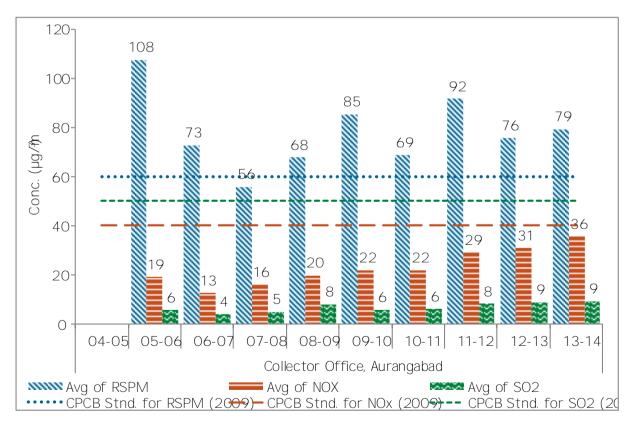



Figure No. 47. Annual average trend of SO<sub>2</sub>, NOx and RSPM atCollector Office, Aurangabad

#### Aurangabad - C.A.D.A. Office

Table No. 35 Data for monthly average reading recorded at A.D.A. Office

| FY      | Ν  | Monthly average (µg∕m)                       |      |                 |
|---------|----|----------------------------------------------|------|-----------------|
| 201314  | IN | RSPM                                         | NO x | SO <sub>2</sub> |
| Apr     | 8  | 83                                           | 36   | 9               |
| May     | 10 | 78                                           | 33   | 8               |
| Jun     | 8  | 46                                           | 32   | 8               |
| Jul     | 8  | 36                                           | 32   | 7               |
| Aug     | 8  | 62                                           | 31   | 7               |
| Sep     | 8  | 49                                           | 29   | 8               |
| Oct     | 10 | 57                                           | 34   | 9               |
| Nov     | 8  | 90                                           | 42   | 11              |
| Dec     | 8  | 93                                           | 48   | 14              |
| Jan     | 10 | 102                                          | 49   | 17              |
| Feb     | 8  | 107                                          | 44   | 15              |
| Mar     | 4  | 90                                           | 42   | 12              |
| Total N |    | % of exceedence of daily readings for 201314 |      | for 201314      |
| 98      |    | 17.3                                         | 0.0  | 0.0             |

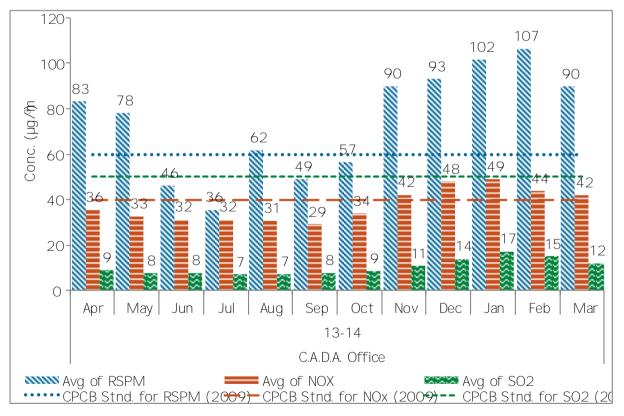



Figure No. 48 Monthly average reading recorded at C.A.D.A. Office Aurangabad



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            | 32  | 119                    | 23   | 7               |
| 0607            | 90  | 79                     | 19   | 5               |
| 07-08           | 98  | 79                     | 23   | 5               |
| 0809            | 102 | 63                     | 21   | 9               |
| 0910            | 99  | 66                     | 22   | 6               |
| 10-11           | 102 | 69                     | 22   | 6               |
| 11-12           | 103 | 75                     | 34   | 10              |
| 12-13           | 102 | 68                     | 35   | 11              |
| 13-14           | 98  | 74                     | 38   | 10              |

Table No. 36 Data for annual average trend of RSPM, NQ and SO2 at C.A.D.A. Office

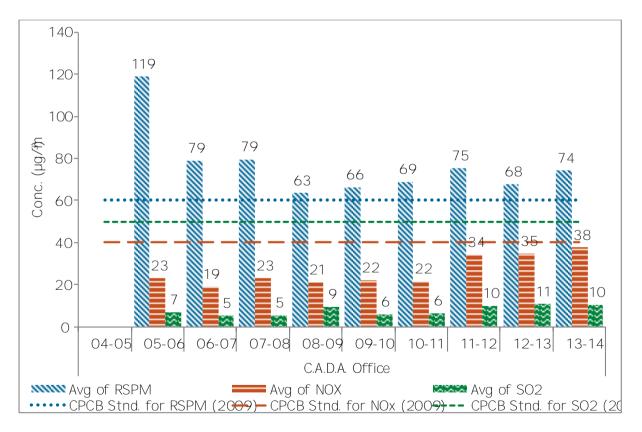



Figure No. 49 Annual average trend of SO<sub>2</sub>, NOx and RSPM atC.A.D.A.Office Aurangabad



#### Jalna - Bachat Bhavan

| FY      | N  | Monthly average (µg/m³)                     |      |                 |
|---------|----|---------------------------------------------|------|-----------------|
| 201314  | IN | RSPM                                        | NO x | SO <sub>2</sub> |
| Apr     | 8  | 113                                         | 30   | 10              |
| May     | 10 | 106                                         | 29   | 9               |
| Jun     | 6  | 78                                          | 29   | 9               |
| Jul     |    |                                             |      |                 |
| Aug     | 7  | 93                                          | 30   | 10              |
| Sep     | 8  | 86                                          | 31   | 11              |
| Oct     | 9  | 72                                          | 29   | 8               |
| Nov     | 9  | 107                                         | 30   | 9               |
| Dec     | 8  | 109                                         | 31   | 11              |
| Jan     | 10 | 115                                         | 31   | 11              |
| Feb     | 8  | 108                                         | 32   | 9               |
| Mar     |    |                                             |      |                 |
| Total N |    | % of exceedenceof daily readings for 201314 |      |                 |
| 83      |    | 49.4                                        | 0.0  | 0.0             |

Table No. 37. Data for monthly average reading recorded atalna-Bachat Bhavan

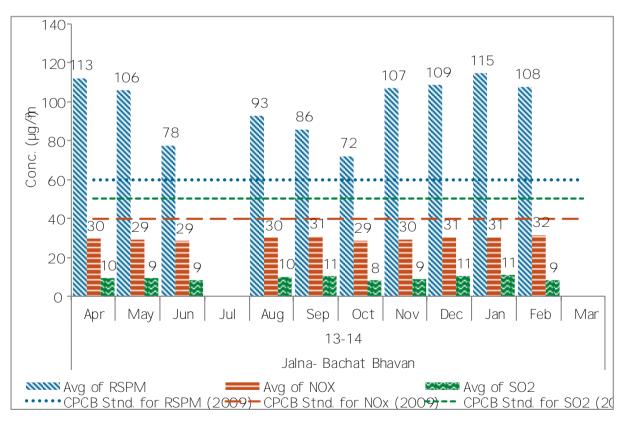



Figure No. 50 Monthly average reading recorded at Jalna Bachat Bhavan



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            | 100 | 53                     | 22   | 13              |
| 07-08           | 95  | 87                     | 28   | 17              |
| 0809            | 18  | 66                     | 32   | 17              |
| 0910            | 32  | 84                     | 28   | 5               |
| 10-11           | 102 | 73                     | 26   | 5               |
| 11-12           | 104 | 89                     | 25   | 6               |
| 12-13           | 93  | 97                     | 30   | 10              |
| 13-14           | 83  | 100                    | 30   | 10              |

| Table No. 38 Data for annual average trend of RSPM, NQ and SO <sub>2</sub> at Jalna - Bachat Bhavan |
|-----------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------|

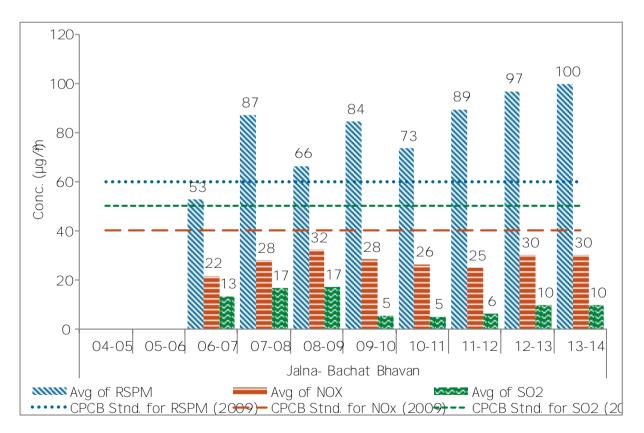



Figure No. 51: Annual aver age trend of SQ, NOx and RSPM at Jalna Bachat Bhavan





#### Jalna - Krishnadhan seeds Ltd

Table No. 39 Data for monthly average reading recorded alalna-Krishnadhan seeds Ltd

| FY     | N       | Monthly average (µg/m³)                        |      |                 |
|--------|---------|------------------------------------------------|------|-----------------|
| 201314 |         | RSPM                                           | NO x | SO <sub>2</sub> |
| A pr   | 9       | 147                                            | 32   | 12              |
| May    | 9       | 113                                            | 31   | 11              |
| Jun    | 7       | 124                                            | 30   | 11              |
| Jul    | 8       | 103                                            | 30   | 10              |
| Aug    | 8       | 115                                            | 32   | 11              |
| Sep    | 8       | 108                                            | 32   | 11              |
| Oct    | 9       | 119                                            | 30   | 10              |
| Nov    | 8       | 168                                            | 32   | 11              |
| Dec    | 9       | 173                                            | 32   | 12              |
| Jan    | 9       | 244                                            | 32   | 12              |
| Feb    | 8       | 228                                            | 32   | 13              |
| Mar    |         |                                                |      |                 |
|        | Total N | N % of exceedence of daily readings for 201314 |      |                 |
| 92     |         | 77.2                                           | 0.0  | 0.0             |

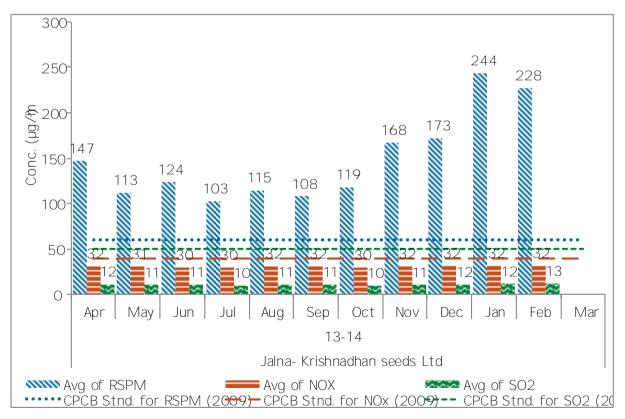



Figure No. 52 Monthly average reading recorded at Jalna Krishnadhan Seeds Ltd



| Year            | Ν   | Ann  | ual average (µg/r | m <sup>3</sup> ) |
|-----------------|-----|------|-------------------|------------------|
|                 |     | RSPM | NO x              | SO <sub>2</sub>  |
| Annual Standard |     | 60   | 40                | 50               |
| 0405            |     |      |                   |                  |
| 0506            |     |      |                   |                  |
| 0607            | 90  | 125  | 29                | 17               |
| 07-08           | 103 | 140  | 44                | 28               |
| 0809            | 16  | 182  | 45                | 30               |
| 0910            | 52  | 111  | 37                | 13               |
| 10-11           | 83  | 139  | 33                | 7                |
| 11-12           | 104 | 140  | 26                | 8                |
| 12-13           | 87  | 143  | 32                | 11               |
| 13-14           | 92  | 150  | 31                | 11               |

Table No. 40 Data for annual average trend of RSPM, NQ and SO\_2 at Jalna - Krishnadhan seeds Ltd

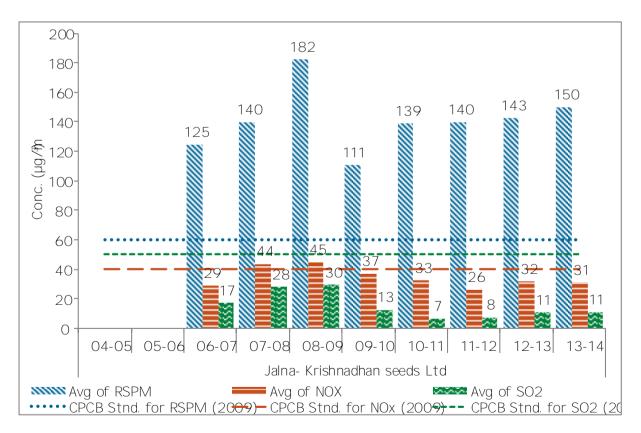



Figure No. 53 Annual average trend of SO<sub>2</sub>, NOx and RSPM at Jalna Krishnadhan Seeds Ltd



#### Latur - MIDC Water Works

Table No. 41: Data for monthly average reading recorded at Latu/IDC Water Works

| FY     | Ν       | Mc                                           | nthly average (µg/m | <i>i</i> )      |
|--------|---------|----------------------------------------------|---------------------|-----------------|
| 201314 | IN      | RSPM                                         | NO x                | SO <sub>2</sub> |
| Apr    | 8       | 75                                           | 19                  | 4               |
| May    | 10      | 113                                          | 17                  | 5               |
| Jun    | 9       | 53                                           | 15                  | 6               |
| Jul    | 8       | 28                                           | 13                  | 6               |
| Aug    | 10      | 50                                           | 13                  | 5               |
| Sep    | 8       | 60                                           | 15                  | 7               |
| Oct    | 8       | 57                                           | 16                  | 7               |
| Nov    | 10      | 95                                           | 14                  | 5               |
| Dec    | 8       | 114                                          | 20                  | 5               |
| Jan    | 8       | 141                                          | 17                  | 5               |
| Feb    | 8       | 129                                          | 14                  | 5               |
| Mar    | 9       | 148                                          | 21                  | 9               |
|        | Total N | % of exceedence of daily readings for 201314 |                     |                 |
|        | 104     | 35.6                                         | 0.0                 | 0.0             |

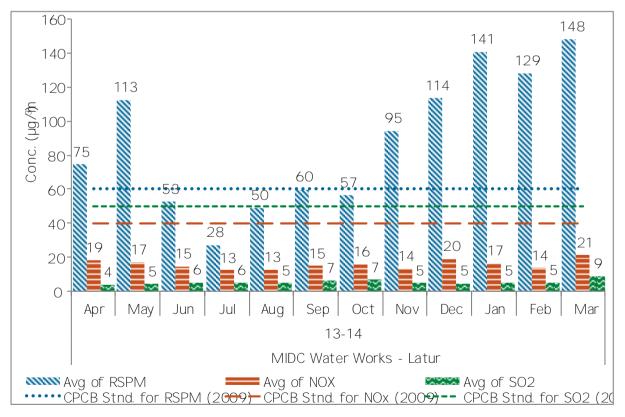



Figure No. 54 Monthly average reading recorded at Latur MIDC Water Works



| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard | 1   | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            |     |                        |      |      |
| 0607            |     |                        |      |      |
| 07-08           |     |                        |      |      |
| 0809            | 91  | 77                     | 22   | 4    |
| 0910            | 99  | 76                     | 22   | 7    |
| 10-11           | 100 | 95                     | 15   | 6    |
| 11-12           | 119 | 99                     | 16   | 6    |
| 12-13           | 99  | 82                     | 19   | 8    |
| 13-14           | 104 | 88                     | 16   | 6    |

Table No. 42 Data for annual average trend for RSPM, NO  $_{\rm X}$  and SO  $_{\rm 2}at$  Latur/MIDC Water Works

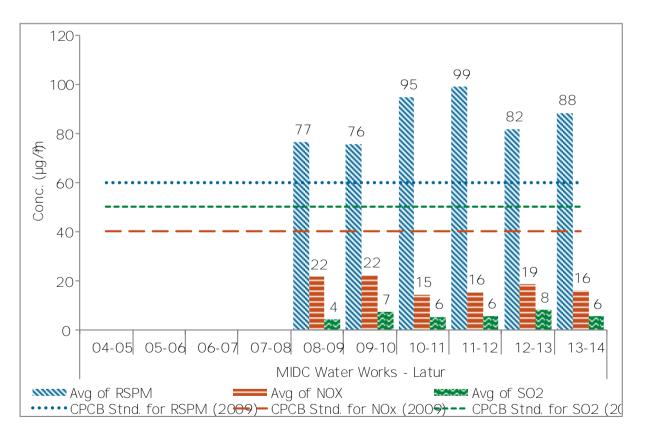



Figure No. 55 Annual average trend of SO<sub>2</sub>, NOx and RSPM atLatur MIDC Water Works





#### Latur - Shyam Nagar-Kshewraj Vidyalaya

Table No. 43 Data for monthly aveage reading recorded a\$hyam Nagar -Kshewraj Vidyalaya

| FY                                                   | N  | Mc         | nthly average (µg/m | <sup>3</sup> )  |
|------------------------------------------------------|----|------------|---------------------|-----------------|
| 201314                                               | IN | RSPM       | NO x                | SO <sub>2</sub> |
| Apr                                                  | 10 | 118        | 20                  | 5               |
| May                                                  | 8  | 140        | 22                  | 8               |
| Jun                                                  | 8  | 74         | 18                  | 7               |
| Jul                                                  | 10 | 44         | 14                  | 7               |
| Aug                                                  | 8  | 78         | 16                  | 5               |
| Sep                                                  | 9  | 97         | 14                  | 6               |
| Oct                                                  | 9  | 77         | 17                  | 9               |
| Nov                                                  | 8  | 80         | 15                  | 6               |
| Dec                                                  | 9  | 131        | 18                  | 5               |
| Jan                                                  | 8  | 134        | 18                  | 6               |
| Feb                                                  |    |            |                     |                 |
| Mar                                                  | 8  | 74         | 21                  | 10              |
| Total N % of exceedence of daily readings for 201314 |    | for 201314 |                     |                 |
|                                                      | 95 | 35.8       | 0.0                 | 0.0             |

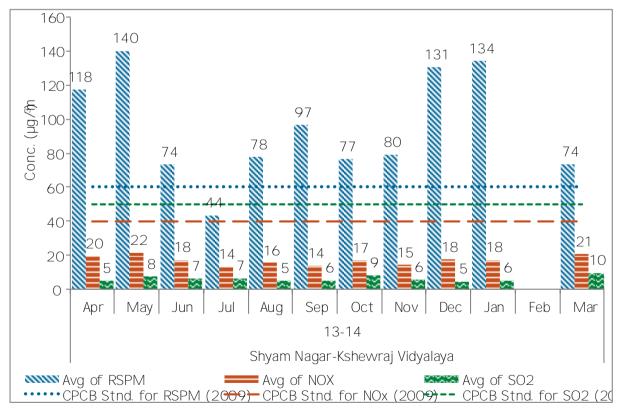



Figure No. 56 Monthly average reading recorded at Shyam Nagar Keshwraj Vidyalaya





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard | 1   | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            |     |                        |      |                 |
| 07-08           |     |                        |      |                 |
| 0809            | 79  | 99                     | 16   | 3               |
| 0910            | 90  | 123                    | 19   | 6               |
| 10-11           | 85  | 139                    | 13   | 6               |
| 11-12           | 100 | 124                    | 14   | 6               |
| 12-13           | 104 | 105                    | 19   | 7               |
| 13-14           | 95  | 95                     | 17   | 7               |

Table No. 44 Data for annual average trend of RSPM, NQ and SO\_2atShyam Nagar -Kshewraj Vidyalaya

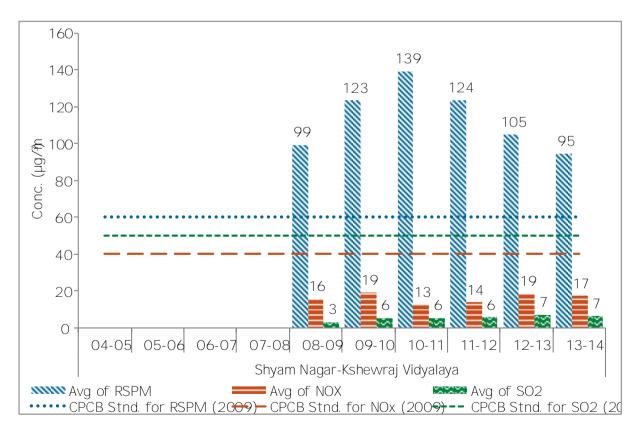



Figure No. 57. Annual average trend of SO<sub>2</sub>, NOx and RSPM atShyam Nagar Keshwraj Vidyalaya





#### Latur - Ganj Golai - Sidhheshwar Bark

Table No. 45 Data for monthly average reading recorded atanj Golai - Sidhheshwar Bank

| FY     | Ν       | Mo                                           | nthly average (µg/m | )               |
|--------|---------|----------------------------------------------|---------------------|-----------------|
| 201314 | IN IN   | RSPM                                         | NO x                | SO <sub>2</sub> |
| Apr    | 8       | 117                                          | 20                  | 6               |
| May    | 9       | 96                                           | 18                  | 6               |
| Jun    | 8       | 82                                           | 18                  | 8               |
| Jul    | 8       | 107                                          | 15                  | 8               |
| Aug    | 9       | 75                                           | 14                  | 7               |
| Sep    | 8       | 80                                           | 16                  | 8               |
| Oct    | 10      | 86                                           | 18                  | 9               |
| Nov    | 8       | 114                                          | 14                  | 5               |
| Dec    | 8       | 135                                          | 18                  | 5               |
| Jan    | 10      | 167                                          | 19                  | 6               |
| Feb    |         |                                              |                     |                 |
| Mar    | 8       | 115                                          | 23                  | 10              |
|        | Total N | % of exceedence of daily readings for 201314 |                     |                 |
|        | 94      | 46.8                                         | 0.0                 | 0.0             |

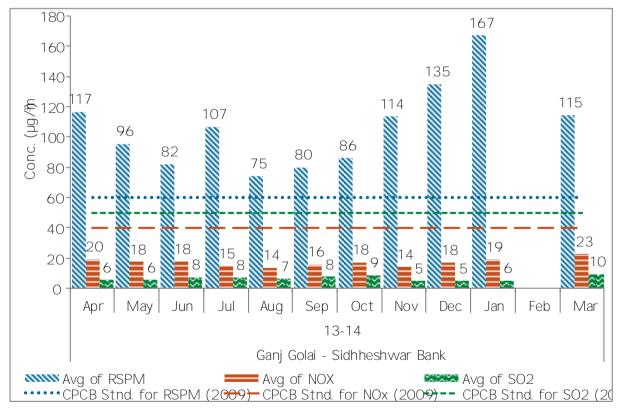



Figure No. 58 Monthly average reading recorded t Ganj Golai Sidheshwar Bank





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard | 1   | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            |     |                        |      |                 |
| 07-08           |     |                        |      |                 |
| 0809            | 91  | 122                    | 22   | 4               |
| 0910            | 74  | 144                    | 26   | 6               |
| 10-11           | 89  | 124                    | 16   | 6               |
| 11-12           | 95  | 140                    | 17   | 6               |
| 12-13           | 103 | 132                    | 20   | 8               |
| 13-14           | 94  | 107                    | 18   | 7               |

Table No. 46 Data for annual average trend of RSPM, NQ and SO\_2 at Ganj Golai  $\,$  -Sidhheshwar Bank

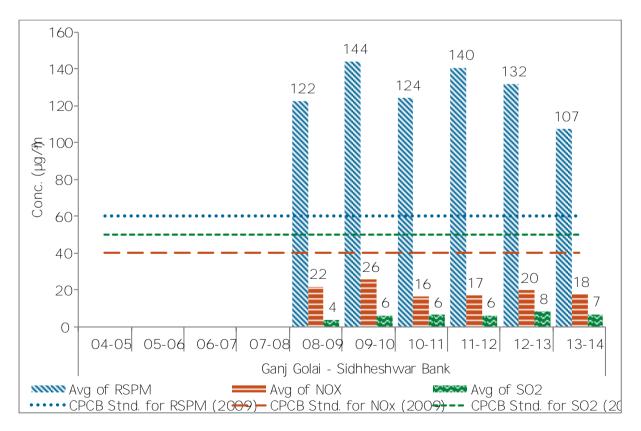



Figure No. 59 Annual average trend of SO<sub>2</sub>, NOx and RSPM atGanj Gol ai Sidheshwar Bank





#### Nanded - Ganeshnagar

| FY     | Ν                                                    | Mc   | nthly average (µg/m | )               |
|--------|------------------------------------------------------|------|---------------------|-----------------|
| 201314 | IN                                                   | RSPM | NO x                | SO <sub>2</sub> |
| Apr    | 8                                                    | 49   | 33                  | 34              |
| May    | 10                                                   | 54   | 40                  | 41              |
| Jun    | 8                                                    | 9    | 10                  | 6               |
| Jul    | 9                                                    | 11   | 4                   | 4               |
| A ug   | 9                                                    | 3    | 0                   | 1               |
| Sep    | 8                                                    | 15   | 10                  | 11              |
| Oct    | 9                                                    | 32   | 17                  | 17              |
| Nov    | 8                                                    | 38   | 9                   | 9               |
| Dec    | 8                                                    | 39   | 9                   | 9               |
| Jan    | 10                                                   | 27   | 17                  | 22              |
| Feb    | 8                                                    | 39   | 26                  | 27              |
| Mar    |                                                      |      |                     |                 |
|        | Total N % of exceedence of daily readings for 201314 |      | for 201314          |                 |
|        | 95                                                   | 0.0  | 0.0                 | 0.0             |

Table No. 47. Data for monthly average reading recorded aneshnagar

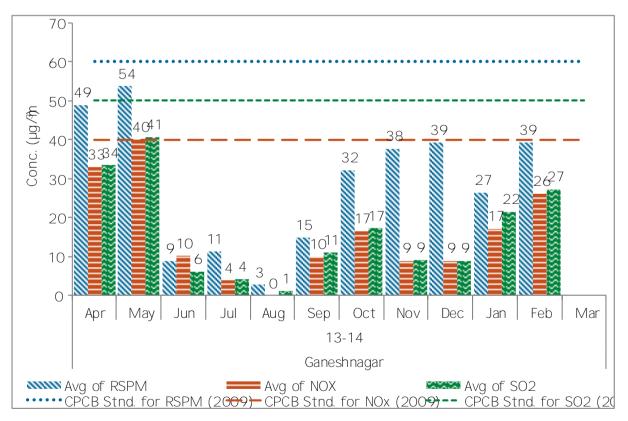



Figure No. 60 Monthly average reading recorded at Ganeshnagar



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standaro | 1   | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            |     |                        |      |                 |
| 07-08           |     |                        |      |                 |
| 0809            |     |                        |      |                 |
| 0910            |     |                        |      |                 |
| 10-11           | 10  | 47                     | 29   | 28              |
| 11-12           | 87  | 26                     | 19   | 18              |
| 12-13           | 112 | 36                     | 21   | 22              |
| 13-14           | 95  | 29                     | 16   | 17              |

Table No. 48 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atGaneshnagar

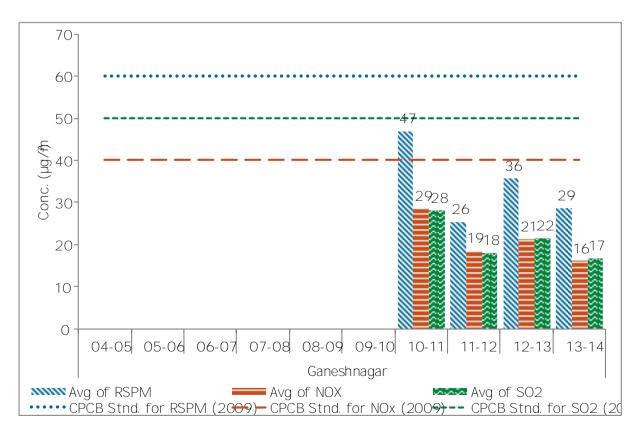



Figure No. 61: Annual average trend of SO<sub>2</sub>, NOx and RSPM atGaneshnagar



### Nanded - Mutha Chowk

| FY     | Ν                                                    | Mc   | nthly average (µg/m | )               |
|--------|------------------------------------------------------|------|---------------------|-----------------|
| 201314 | I N                                                  | RSPM | NO x                | SO <sub>2</sub> |
| Apr    | 8                                                    | 77   | 40                  | 46              |
| May    | 9                                                    | 81   | 46                  | 51              |
| Jun    | 9                                                    | 15   | 11                  | 16              |
| Jul    | 8                                                    | 9    | 11                  | 12              |
| Aug    | 9                                                    | 4    | 1                   | 2               |
| Sep    | 8                                                    | 22   | 10                  | 11              |
| Oct    | 8                                                    | 55   | 24                  | 30              |
| Nov    | 10                                                   | 156  | 15                  | 22              |
| Dec    | 8                                                    | 139  | 16                  | 23              |
| Jan    | 9                                                    | 42   | 21                  | 21              |
| Feb    | 8                                                    | 67   | 35                  | 37              |
| Mar    |                                                      |      |                     |                 |
|        | Total N % of exceedence of daily readings for 201314 |      |                     | for 201314      |
|        | 94                                                   | 19.1 | 0.0                 | 0.0             |

Table No. 49 Data for monthly average reading recorded at the Chowk

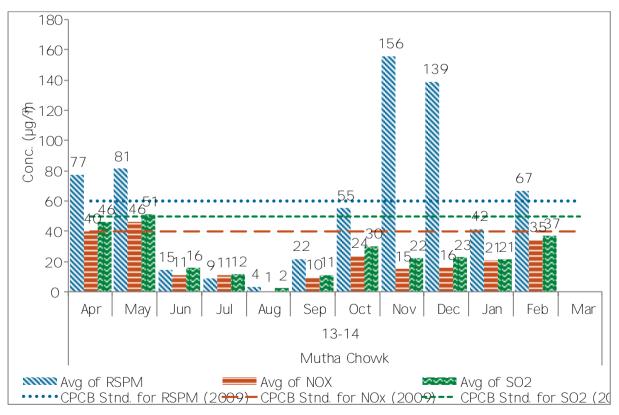



Figure No. 62 Monthly average reading recorded at Mutha Chowk



| Year           | Ν   | An   | Annual average (µg∕m³) |      |  |
|----------------|-----|------|------------------------|------|--|
|                |     | RSPM | NO x                   | SO 2 |  |
| Annual Standar | d   | 60   | 40                     | 50   |  |
| 0405           |     |      |                        |      |  |
| 0506           |     |      |                        |      |  |
| 0607           |     |      |                        |      |  |
| 07-08          |     |      |                        |      |  |
| 0809           |     |      |                        |      |  |
| 0910           |     |      |                        |      |  |
| 10-11          |     |      |                        |      |  |
| 11-12          | 89  | 44   | 28                     | 28   |  |
| 12-13          | 104 | 53   | 25                     | 27   |  |
| 13-14          | 94  | 62   | 21                     | 25   |  |

Table No. 50 Data for annual average trend of RSPM, NQ and SO2 at Mutha Chowk

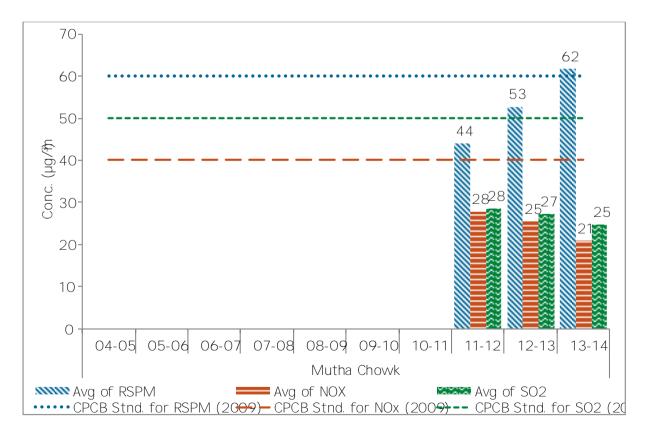



Figure No. 63 Annual average trend of SO<sub>2</sub>, NOx and RSPM atMutha Chowk



#### Nanded - Industrial Area CIDCO

Table No. 51: Data for monthly average reading recorded andustrial Area CIDCO -Nanded

| FY     | Ν                                                   | Mc   | nthly average (µg/m | )               |
|--------|-----------------------------------------------------|------|---------------------|-----------------|
| 201314 | IN                                                  | RSPM | NO x                | SO <sub>2</sub> |
| Apr    | 10                                                  | 126  | 82                  | 82              |
| May    | 8                                                   | 135  | 89                  | 90              |
| Jun    | 16                                                  | 23   | 21                  | 19              |
| Jul    | 10                                                  | 35   | 22                  | 27              |
| Aug    | 8                                                   | 6    | 0                   | 8               |
| Sep    | 9                                                   | 67   | 52                  | 53              |
| Oct    | 9                                                   | 79   | 60                  | 66              |
| Nov    | 8                                                   | 146  | 15                  | 35              |
| Dec    | 10                                                  | 140  | 15                  | 35              |
| Jan    | 8                                                   | 111  | 66                  | 66              |
| Feb    | 8                                                   | 120  | 72                  | 71              |
| Mar    |                                                     |      |                     |                 |
|        | Total N % of exceedence of daily readings for 20131 |      | for 201314          |                 |
|        | 104                                                 | 47.1 | 21.2                | 20.2            |

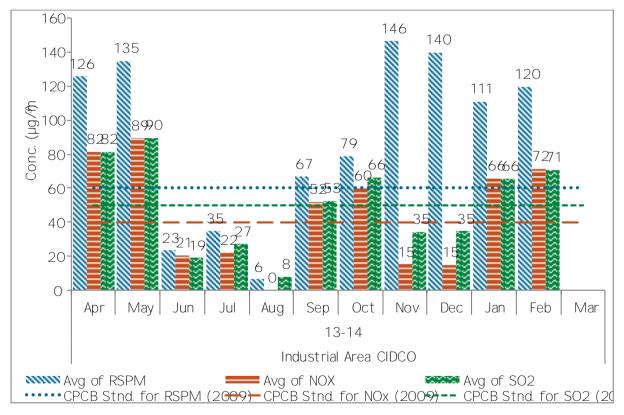



Figure No. 64 Monthly average reading recorded at Industrial Are&IDCO -Nanded



| Year            | Ν   | An   | Annual average (µg∕m³) |      |  |
|-----------------|-----|------|------------------------|------|--|
|                 |     | RSPM | NO x                   | SO 2 |  |
| Annual Standard | d   | 60   | 40                     | 50   |  |
| 0405            |     |      |                        |      |  |
| 0506            |     |      |                        |      |  |
| 0607            |     |      |                        |      |  |
| 07-08           |     |      |                        |      |  |
| 0809            |     |      |                        |      |  |
| 0910            |     |      |                        |      |  |
| 10-11           |     |      |                        |      |  |
| 11-12           | 84  | 65   | 45                     | 43   |  |
| 12-13           | 103 | 88   | 54                     | 53   |  |
| 13-14           | 104 | 85   | 43                     | 48   |  |

Table No. 52 Data for annual average trend of RSPM, NQ and SO\_atIndustrial Area CIDCO  $\,$  - Nanded

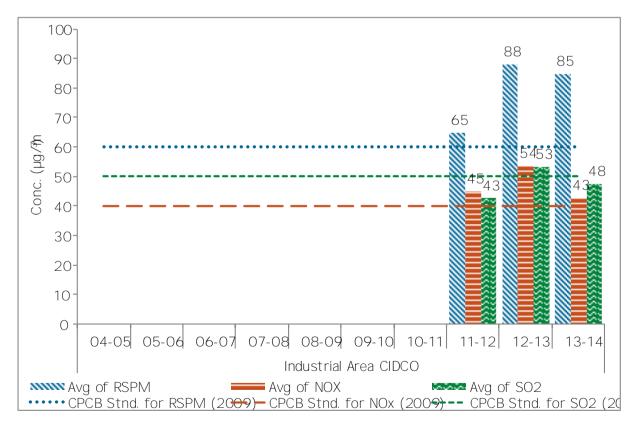



Figure No. 65 Annual average trend of SO<sub>2</sub>, NOx and RSPM atIndustrial Area Nanded





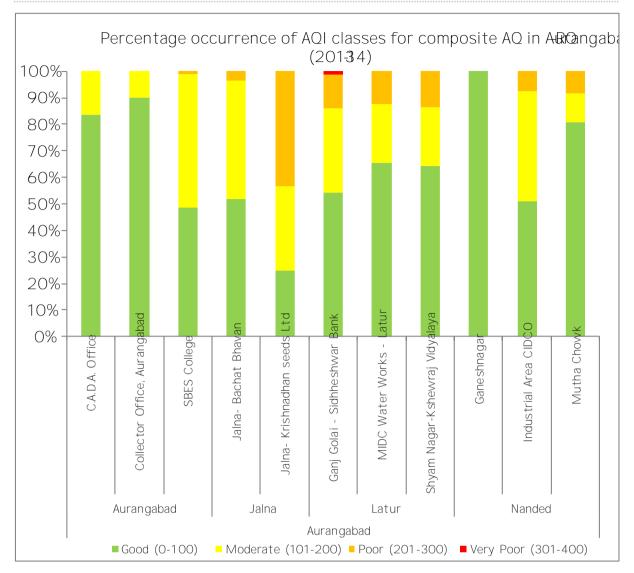




Figure No. 66 Percentage occurrence of AQI classes for composite AQ inutrangabad -RO (201314)





# RO - Chandrapur



| MPCB RO    | Region     | Station code | Station name          | Туре        | Latitude (deg)  | Longitude (deg) |
|------------|------------|--------------|-----------------------|-------------|-----------------|-----------------|
|            | Chandrapur | 267          | Ghuggus               | Residential | 19° 56' 23.0" N | 79°06'50.9"E    |
|            | Chandrapur | 281          | Chandrapur - MIDC     | Industrial  | 19° 58' 58.3" N | 79°13'54.7"E    |
| Chandranur | Chandrapur | 396          | Chandrapur - SRO MPCB | Residential | 19° 57' 55.9" N | 79° 17' 59.1" E |
| Chandrapur | Chandrapur | 638          | Tadali MIDC           | Industrial  | 20°00'59.66"    | 79° 11' 51.5" E |
|            | Chandrapur | 639          | Ballarshah            | Residential | 19° 51' 11.8" N | 79° 20' 55.7" E |
|            | Chandrapur | 640          | Rajura                | Industrial  | 19° 44' 11.7" N | 79° 10' 29.5" E |

## Chandrapur - Ghuggus

| FY                                                  | Ν   | Monthly average (µg/n) |            |                 |
|-----------------------------------------------------|-----|------------------------|------------|-----------------|
| 201314                                              | I N | RSPM                   | NO x       | SO <sub>2</sub> |
| Apr                                                 | 8   | 238                    | 5          | 13              |
| May                                                 | 10  | 232                    | 8          | 16              |
| Jun                                                 | 8   | 168                    | 11         | 12              |
| Jul                                                 | 8   | 150                    | 19         | 13              |
| Aug                                                 | 6   | 116                    | 11         | 12              |
| Sep                                                 | 8   | 104                    | 19         | 16              |
| Oct                                                 | 8   | 120                    | 24         | 1               |
| Nov                                                 | 8   | 119                    | 19         | 0               |
| Dec                                                 | 8   | 217                    | 43         | 6               |
| Jan                                                 | 8   | 245                    | 28         | 2               |
| Feb                                                 | 8   | 180                    | 27         | 6               |
| Mar                                                 |     |                        |            |                 |
| Total N% of exceedence of daily readings for 201314 |     |                        | for 201314 |                 |
|                                                     | 88  | 88 86.4 1.1 0.0        |            |                 |

Table No. 53 Data for monthly average reading ecorded atGhuggus

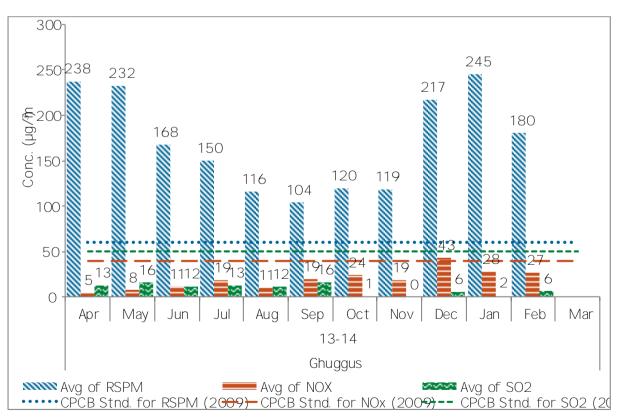



Figure No. 67. Monthly average reading recorded at Ghuggust Chandrapur





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard | 1   | 60                     | 40   | 50              |
| 0405            | 80  | 80                     | 28   | 18              |
| 0506            | 96  | 131                    | 31   | 21              |
| 0607            | 75  | 139                    | 39   | 31              |
| 07-08           | 95  | 186                    | 53   | 36              |
| 0809            | 86  | 172                    | 54   | 34              |
| 0910            | 77  | 180                    | 32   | 46              |
| 10-11           | 103 | 211                    | 24   | 23              |
| 11-12           | 95  | 206                    | 21   | 18              |
| 12-13           | 102 | 207                    | 13   | 11              |
| 13-14           | 88  | 174                    | 19   | 9               |

Table No. 54 Data for annual average trend of RSPM, NO<sub>x</sub> and SO<sub>2</sub>atGhuggus

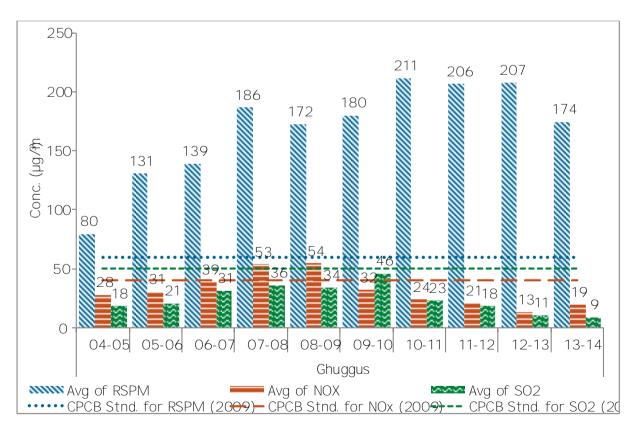



Figure No. 68 Annual average trend of SO<sub>2</sub>, NOx and RSPM atGhuggus 1 Chandrapur



## Chandrapur - Chandrapur - MIDC

| FY                          | Ν       | Mor                                          | Monthly average (µg/m) |                 |  |
|-----------------------------|---------|----------------------------------------------|------------------------|-----------------|--|
| 201314                      | IN      | RSPM                                         | NO x                   | SO <sub>2</sub> |  |
| Apr                         | 5       | 34                                           | 13                     | 25              |  |
| May                         | 10      | 71                                           | 24                     | 32              |  |
| Jun                         | 7       | 66                                           | 30                     | 26              |  |
| Jul                         | 9       | 43                                           | 20                     | 11              |  |
| Aug                         | 9       | 34                                           | 16                     | 23              |  |
| Sep                         | 10      | 40                                           | 18                     | 49              |  |
| Oct                         | 10      | 54                                           | 33                     | 5               |  |
| Nov                         | 9       | 70                                           | 38                     | 6               |  |
| Dec                         | 8       | 78                                           | 43                     | 7               |  |
| Jan                         | 10      | 87                                           | 36                     | 6               |  |
| Feb                         | 8       | 75                                           | 26                     | 12              |  |
| Mar                         |         |                                              |                        |                 |  |
|                             | Total N | % of exceedence of daily readings for 201314 |                        |                 |  |
| 95 <b>9</b> .5 0.0 <b>3</b> |         |                                              | 3.2                    |                 |  |

Table No. 55 Data formonthly average reading recorded a Chandrapur - MIDC

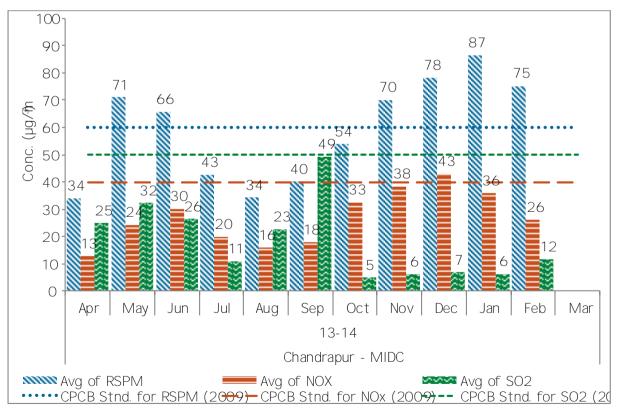



Figure No. 69 Monthly average reading recorded at ChandrapurMIDC



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            | 95  | 110                    | 37   | 25              |
| 0506            | 92  | 130                    | 37   | 26              |
| 0607            | 97  | 123                    | 41   | 38              |
| 07-08           | 98  | 125                    | 50   | 37              |
| 0809            | 81  | 148                    | 53   | 34              |
| 0910            | 79  | 141                    | 31   | 63              |
| 10-11           | 102 | 150                    | 25   | 25              |
| 11-12           | 108 | 131                    | 35   | 21              |
| 12-13           | 100 | 105                    | 17   | 14              |
| 13-14           | 95  | 60                     | 27   | 18              |

Table No. 56 Data for annual average trend of RSPM, NQ and SO<sub>2</sub>atChandrapur -MIDC

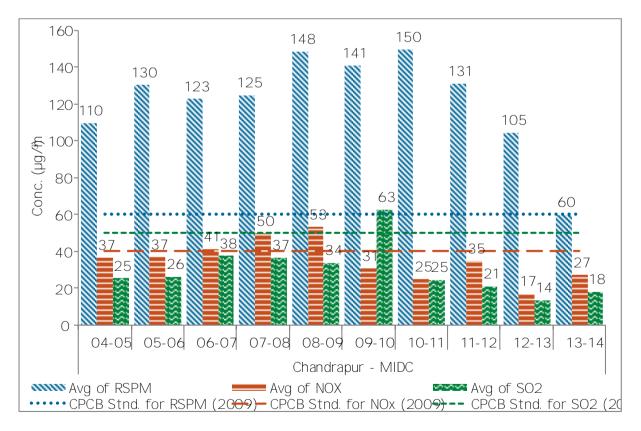



Figure No. 70 Annual average trend of SO<sub>2</sub>, NOx and RSPM atChandrapur -MIDC



#### Chandrapur - Chandrapur - SRO MPCB

Table No. 57. Data for monthly average reading recorded athandrapur -SRO MPCB

| FY     | Ν       | Monthly average (µg/m³)                      |      |                 |
|--------|---------|----------------------------------------------|------|-----------------|
| 201314 | IN      | RSPM                                         | NO x | SO <sub>2</sub> |
| Apr    | 10      | 67                                           | 22   | 14              |
| May    | 10      | 44                                           | 25   | 24              |
| Jun    | 8       | 48                                           | 32   | 19              |
| Jul    | 10      | 46                                           | 20   | 16              |
| Aug    | 9       | 44                                           | 20   | 11              |
| Sep    | 10      | 45                                           | 21   | 34              |
| Oct    | 9       | 29                                           | 35   | 0               |
| Nov    | 8       | 49                                           | 26   | 2               |
| Dec    |         |                                              |      |                 |
| Jan    |         |                                              |      |                 |
| Feb    | 26      | 115                                          | 33   | 1               |
| Mar    | 16      | 75                                           | 20   | 0               |
|        | Total N | % of exceedence of daily readings for 201314 |      |                 |
| 116    |         | 20.7                                         | 0.9  | 0.9             |

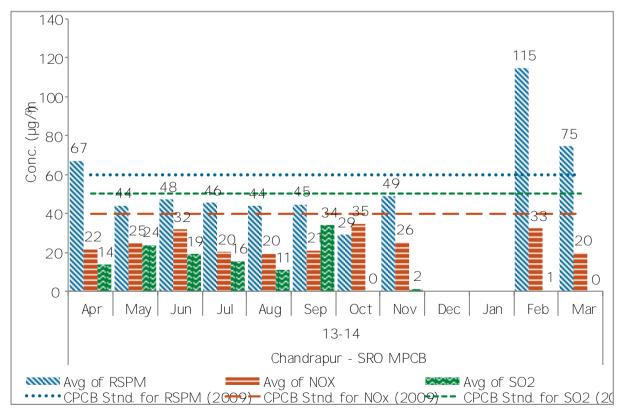



Figure No. 71: Monthly average reading recorded at Chandrapul SRO MPCB



| Year            | Ν   | Annual average (µg∕m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            | 70  | 107                    | 34   | 23              |
| 0506            | 90  | 116                    | 30   | 20              |
| 0607            | 88  | 130                    | 38   | 31              |
| 07-08           | 98  | 161                    | 46   | 30              |
| 0809            | 82  | 159                    | 45   | 26              |
| 0910            | 76  | 74                     | 35   | 41              |
| 10-11           | 102 | 92                     | 27   | 21              |
| 11-12           | 100 | 66                     | 31   | 18              |
| 12-13           | 118 | 75                     | 17   | 14              |
| 13-14           | 116 | 66                     | 26   | 10              |

Table No. 58 Data for annual average trend of RSPM, NQand SO2atChandrapur - SRO MPCB

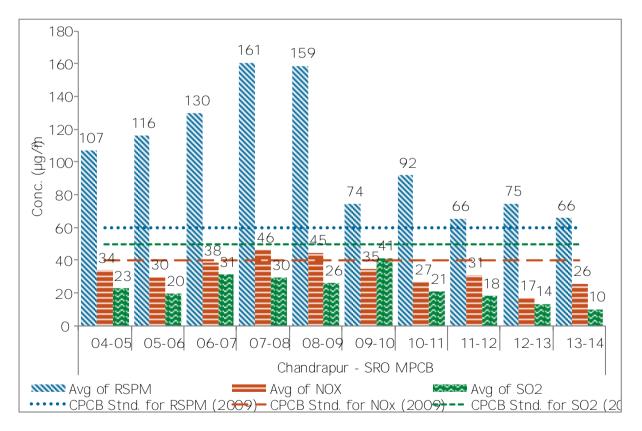



Figure No. 72 Annual average trend of SO<sub>2</sub>, NOx and RSPM atChandrapur Ì SRO MPCB





#### Chandrapur - Tadali MIDC

Table No. 59 Data for monthly average reading recorded atadali MIDC

| FY                                           |    | N             | Month   | ly average (µg/ | ′m³)            |
|----------------------------------------------|----|---------------|---------|-----------------|-----------------|
| 201314                                       |    | IN            | RSPM    | NO x            | SO <sub>2</sub> |
| Apr                                          |    | 8             | 277     | 7               | 10              |
| May                                          |    | 10            | 217     | 9               | 14              |
| Jun                                          |    | 8             | 188     | 11              | 11              |
| Jul                                          |    | 8             | 162     | 19              | 8               |
| Aug                                          |    | 6             | 78      | 7               | 10              |
| Sep                                          |    | 8             | 88      | 10              | 17              |
| Oct                                          |    | 8             | 160     | 18              | 4               |
| Nov                                          |    | 8             | 207     | 27              | 0               |
| Dec                                          |    | 8             | 204     | 25              | 4               |
| Jan                                          |    | 8             | 296     | 17              | 0               |
| Feb                                          |    | 8             | 233     | 21              | 1               |
| Mar                                          |    |               |         |                 |                 |
| Total N % of exceedence of daily readings fo |    | js for 201314 |         |                 |                 |
|                                              | 88 | 81.8          | 0.0 0.0 |                 | 0               |

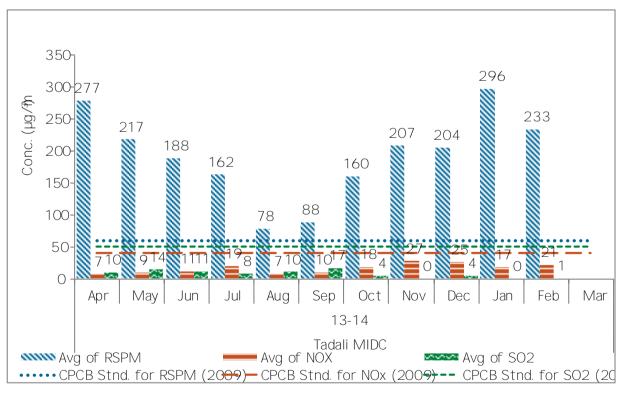



Figure No. 73 Monthly average reading recorded at Taladi MIDC



| Year            | Ν   | Annual average (µg/m³) |      |      |  |
|-----------------|-----|------------------------|------|------|--|
|                 |     | RSPM                   | NO x | SO 2 |  |
| Annual Standard |     | 60                     | 40   | 50   |  |
| 0405            |     |                        |      |      |  |
| 0506            |     |                        |      |      |  |
| 0607            |     |                        |      |      |  |
| 07-08           |     |                        |      |      |  |
| 0809            |     |                        |      |      |  |
| 0910            | 59  | 169                    | 19   | 29   |  |
| 10-11           | 65  | 216                    | 20   | 18   |  |
| 11-12           | 88  | 151                    | 18   | 16   |  |
| 12-13           | 104 | 173                    | 13   | 9    |  |
| 13-14           | 88  | 195                    | 16   | 7    |  |

Table No. 60 Data for annual average trend of RSPM, NQand SO2atTadali MIDC

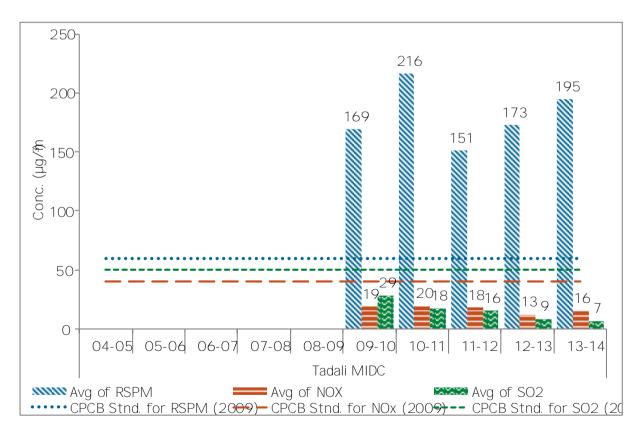



Figure No. 74 Annual average trend of SO<sub>2</sub>, NOx and RSPM atTaladi MIDC



## Chandrapur - Ballarshah

| FY                                                           | Ν  | Mor        | nthly average (µg/m) |                 |
|--------------------------------------------------------------|----|------------|----------------------|-----------------|
| 201314                                                       | IN | RSPM       | NO x                 | SO <sub>2</sub> |
| Apr                                                          | 8  | 171        | 35                   | 13              |
| May                                                          | 10 | 191        | 26                   | 16              |
| Jun                                                          | 6  | 85         | 34                   | 26              |
| Jul                                                          | 8  | 92         | 14                   | 14              |
| Aug                                                          | 6  | 35         | 19                   | 15              |
| Sep                                                          | 8  | 79         | 24                   | 20              |
| Oct                                                          | 8  | 93         | 37                   | 0               |
| Nov                                                          | 6  | 182        | 38                   | 1               |
| Dec                                                          | 8  | 177        | 53                   | 0               |
| Jan                                                          | 6  | 194        | 48                   | 0               |
| Feb                                                          | 8  | 159        | 82                   | 2               |
| Mar                                                          |    |            |                      |                 |
| Total N         % of exceedence of daily readings for 201314 |    | for 201314 |                      |                 |
|                                                              | 82 | 63.4       | 8.5                  | 0.0             |

Table No. 61: Data for monthly average reading recorded atallarshah

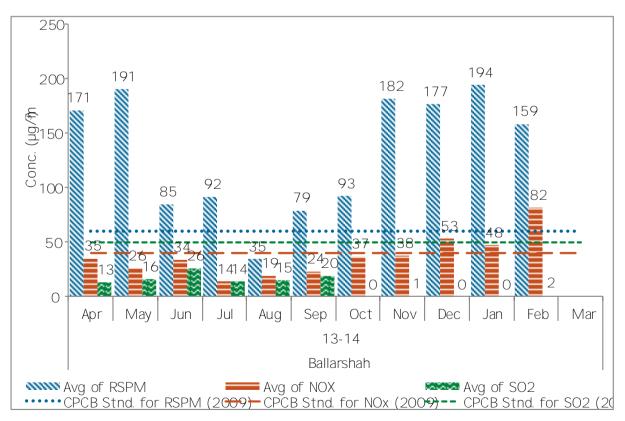



Figure No. 75 Monthly average reading recorded aBallarshah



| Year            | Ν      | Annual average (µg∕m³) |      |                 |  |
|-----------------|--------|------------------------|------|-----------------|--|
|                 |        | RSPM                   | NO x | SO <sub>2</sub> |  |
| Annual Standard | •<br>• | 60                     | 40   | 50              |  |
| 0405            |        |                        |      |                 |  |
| 0506            |        |                        |      |                 |  |
| 0607            |        |                        |      |                 |  |
| 07-08           |        |                        |      |                 |  |
| 0809            |        |                        |      |                 |  |
| 0910            | 65     | 122                    | 35   | 32              |  |
| 10-11           | 107    | 129                    | 32   | 17              |  |
| 11-12           | 68     | 123                    | 24   | 19              |  |
| 12-13           | 100    | 192                    | 19   | 9               |  |
| 13-14           | 82     | 135                    | 37   | 10              |  |

Table No. 62 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at Ballarshah

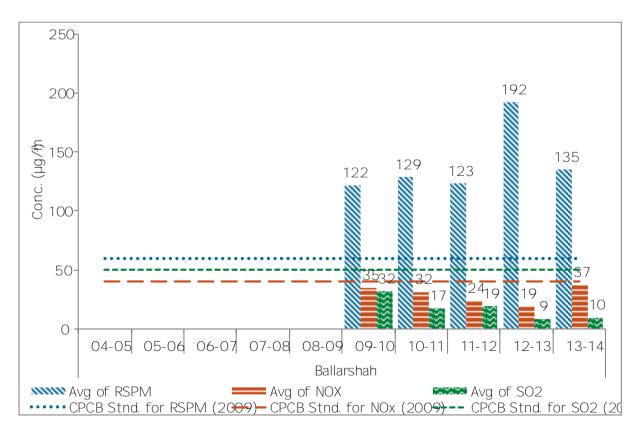



Figure No. 76 Annual average trend of  $SO_2$ , NOx and RSPM atBallarshah



## Chandrapur - Rajura

| FY      | Ν  | Mor                                          | nthly average (µg/m³) |                 |
|---------|----|----------------------------------------------|-----------------------|-----------------|
| 201314  | IN | RSPM                                         | NO x                  | SO <sub>2</sub> |
| Apr     | 6  | 187                                          | 22                    | 12              |
| May     | 6  | 217                                          | 25                    | 17              |
| Jun     | 4  | 131                                          | 26                    | 26              |
| Jul     | 8  | 52                                           | 13                    | 14              |
| Aug     | 6  | 73                                           | 15                    | 24              |
| Sep     | 8  | 77                                           | 32                    | 25              |
| Oct     | 8  | 107                                          | 32                    | 2               |
| Nov     | 6  | 234                                          | 32                    | 0               |
| Dec     | 8  | 221                                          | 36                    | 2               |
| Jan     | 6  | 169                                          | 53                    | 1               |
| Feb     | 8  | 162                                          | 56                    | 1               |
| Mar     |    |                                              |                       |                 |
| Total N |    | % of exceedence of daily readings for 201314 |                       | or 201314       |
|         | 74 | 67.6                                         | 1.4                   | 0.0             |

Table No. 63 Data for monthly average reading recorded Rajura

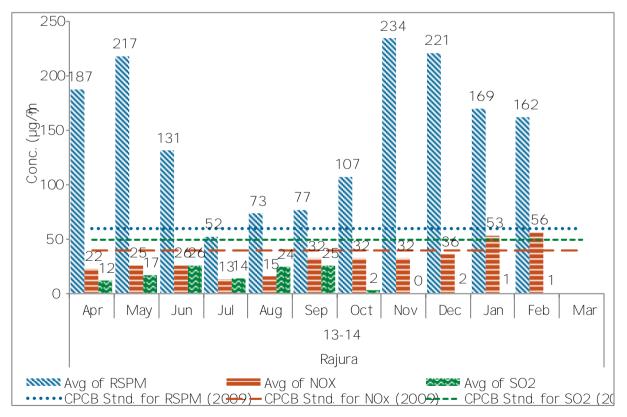



Figure No. 77: Monthly average reading recorded at Rajura





| Year            | Ν  | Annual average (µg/m³) |      |      |
|-----------------|----|------------------------|------|------|
|                 |    | RSPM                   | NO x | SO 2 |
| Annual Standard |    | 60                     | 40   | 50   |
| 0405            |    |                        |      |      |
| 0506            |    |                        |      |      |
| 0607            |    |                        |      |      |
| 07-08           |    |                        |      |      |
| 0809            |    |                        |      |      |
| 0910            | 30 | 119                    | 37   | 34   |
| 10-11           | 93 | 115                    | 19   | 17   |
| 11-12           | 71 | 159                    | 19   | 16   |
| 12-13           | 72 | 196                    | 21   | 9    |
| 13-14           | 74 | 145                    | 31   | 10   |

Table No. 64 Data for annual average trend of RSPM, NQand SO2atRajura

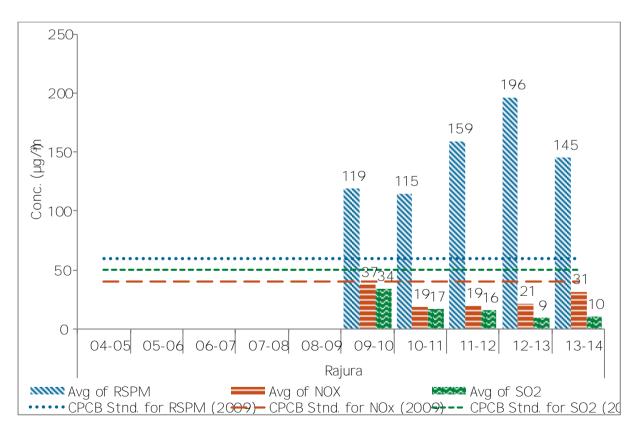



Figure No. 78 : Annual average trend of SQ<sub>2</sub>, NOx and RSPM atRajura





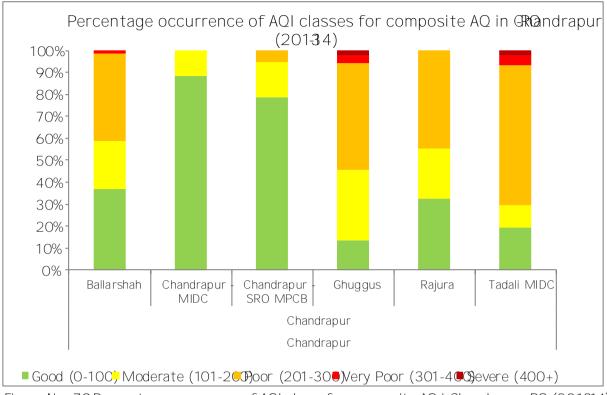
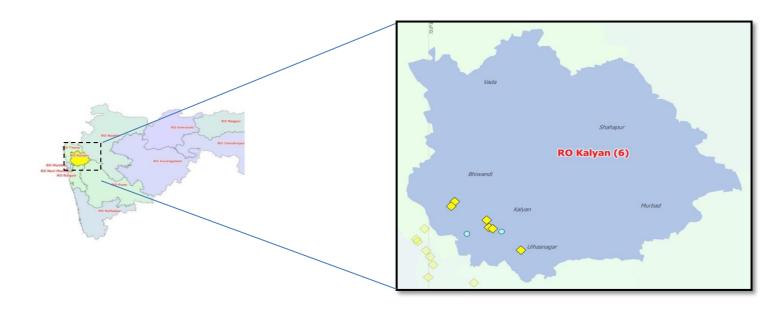




Figure No. 79. Percentage occurrence of AQI classes for composite AQ inChandrapur -RO (201314)





# ROÌ Kalyan



| MPCB RO | Region     | Station code | Station name            | Туре                  | Latitude (deg)  | Longitude (deg) |
|---------|------------|--------------|-------------------------|-----------------------|-----------------|-----------------|
|         | Ambernath  | 445          | Ambernath               | Rural and other areas | 19° 13' 26.2" N | 73° 09' 15.0" E |
|         | Badlapur   | 649          | Badlapur - BIWA House   | Rural and other areas | 19° 09' 22.2" N | 73° 14' 16.0" E |
|         | Bhiwandi   |              | I.G.M. Hospital         | Rural and other areas | 19° 17' 57.2" N | 73°04'00.4" E   |
|         | Bhiwandi   |              | Prematai hall           | Commercial            | 19° 17' 07.7" N | 73° 03' 27.8" E |
| Kalyan  | Dombivali  | 265          | Dombivali               | Industrial            | 19° 12' 15.8" N | 73° 05' 53.9" E |
|         | Dombivali  |              | MIDC Office Dombivali   | Industrial            | 19° 12' 47.0" N | 73° 06' 17.4" E |
|         | Kalyan     |              | MPCB RO Kalyan office   | Commercial            | 19°14'42.0" N   | 73° 08' 58.6" E |
|         | Ulhasnagar | 647          | Smt. CHM College Campus | Rural and other areas | 19°13'1.24" N   | 73° 09' 51.3" E |
|         | Ulhasnagar | 648          | Powai Chowk             | Rural and other areas | 19° 13' 26.0" N | 73° 09' 16.2" E |

## Ambernath

| FY     | - N     | Mor           | nthly average (µg/m)   |             |
|--------|---------|---------------|------------------------|-------------|
| 201314 |         | RS PM         | NO x                   | SO 2        |
| Apr    | 9       | 82            | 56                     | 34          |
| May    | 9       | 71            | 47                     | 33          |
| Jun    | 8       | 75            | 43                     | 25          |
| Jul    | 8       | 75            | 40                     | 20          |
| Aug    | 9       | 85            | 44                     | 20          |
| Sep    | 9       | 52            | 30                     | 18          |
| Oct    | 9       | 67            | 42                     | 20          |
| Nov    | 8       | 107           | 57                     | 20          |
| Dec    | 9       | 156           | 86                     | 21          |
| Jan    | 9       | 208           | 121                    | 83          |
| Feb    | 8       | 248           | 142                    | 50          |
| Mar    |         |               |                        |             |
|        | Total N | % of exceeder | nceof daily readings f | For 2013-14 |
|        | 95      | 36.8          | 18.9                   | 3.2         |

Table No. 65 Data for monthly average reading recorded atmbernath

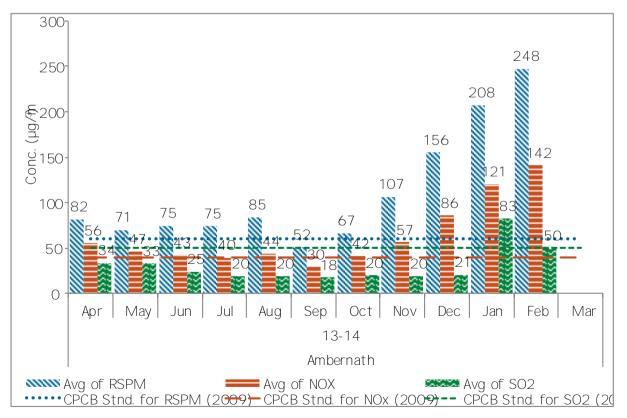



Figure No. 80 Monthly average reading recorded at Ambernath





| Year            | Ν   | Annual average (µg∕m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            | 63  | 97                     | 36   | 31   |
| 0506            | 85  | 83                     | 52   | 30   |
| 0607            | 86  | 93                     | 44   | 24   |
| 07-08           | 101 | 106                    | 40   | 31   |
| 0809            | 26  | 70                     | 53   | 29   |
| 0910            |     |                        |      |      |
| 10-11           |     |                        |      |      |
| 11-12           |     |                        |      |      |
| 12-13           | 92  | 118                    | 91   | 42   |
| 13-14           | 95  | 111                    | 64   | 31   |

Table No. 66 Data for annual average trend of RSPM, NQ and SO2 at Ambernath

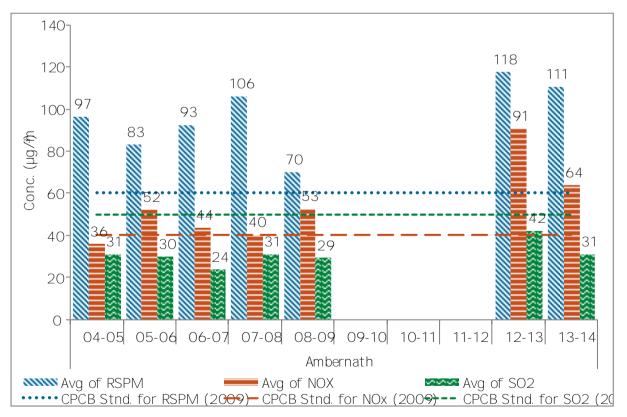



Figure No. 81: Annual average trend of SO<sub>2</sub>, NOx and RSPM atAmbernath



#### Badlapur - Badlapur - BIWA House

Table No. 67. Data for monthly average reading recorded atadlapur - BIWA House

| FY      | N  | Mor           | nthly average (µg/m)   |                 |
|---------|----|---------------|------------------------|-----------------|
| 201314  |    | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr     | 9  | 90            | 61                     | 33              |
| May     | 9  | 66            | 43                     | 37              |
| Jun     | 5  | 76            | 41                     | 25              |
| Jul     | 6  | 72            | 38                     | 23              |
| Aug     | 8  | 74            | 41                     | 21              |
| Sep     | 8  | 59            | 28                     | 23              |
| Oct     | 9  | 56            | 35                     | 20              |
| Nov     | 7  | 87            | 44                     | 23              |
| Dec     | 9  | 137           | 36                     | 32              |
| Jan     | 9  | 187           | 95                     | 81              |
| Feb     | 8  | 135           | 64                     | 50              |
| Mar     |    |               |                        |                 |
| Total N |    | % of exceeder | nceof daily readings f | for 201314      |
|         | 87 | 33.3          | 12.6                   | 8.0             |

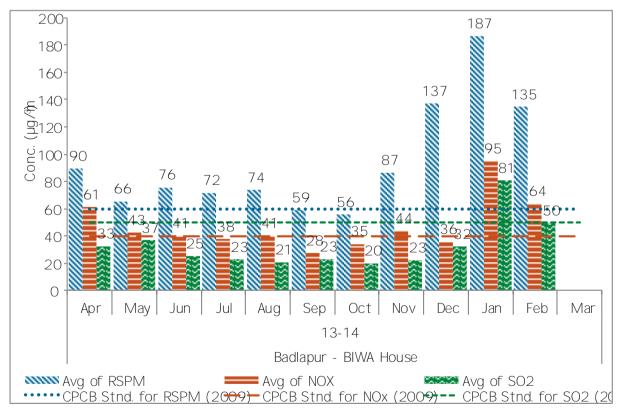



Figure No. 82 Monthly average reading recorded at Badlapuit BIWA House



| Year            | Ν               | Anr  | Annual average (µg/m³) |      |  |
|-----------------|-----------------|------|------------------------|------|--|
|                 |                 | RSPM | NO x                   | SO 2 |  |
| Annual Standard | Annual Standard |      | 40                     | 50   |  |
| 0405            |                 |      |                        |      |  |
| 0506            |                 |      |                        |      |  |
| 0607            | 80              | 141  | 39                     | 27   |  |
| 07-08           | 104             | 93   | 42                     | 30   |  |
| 0809            | 102             | 98   | 76                     | 35   |  |
| 0910            | 84              | 103  | 85                     | 55   |  |
| 10-11           | 94              | 118  | 74                     | 36   |  |
| 11-12           | 95              | 121  | 68                     | 41   |  |
| 12-13           | 93              | 100  | 69                     | 41   |  |
| 13-14           | 87              | 96   | 49                     | 35   |  |

Table No. 68 Data for annual average trend of RSPM, NQand SO2atBadlapur -BIWA House

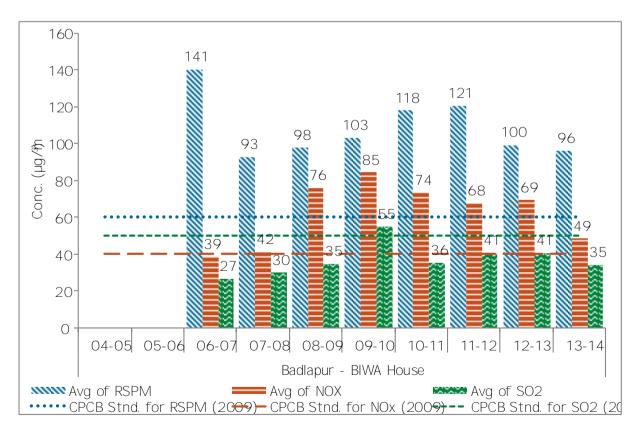



Figure No. 83 Annual average trend of SO<sub>2</sub>, NOx and RSPM at Badlapur  $\,$   $\,$  BIWA House





## Bhiwandi - I.G.M. Hospital

| <b>—</b>   |               |                 |                         |                      |
|------------|---------------|-----------------|-------------------------|----------------------|
| Table No.  | 69 Data for m | ionthly average | e reading recorde       | ed a.G.M. Hospital   |
| 10010 1101 | 0 / 0 0 0 0   | areing areinge  | 1 0 0 0 1 1 0 0 0 1 0 0 | or anonin i rooprear |

| FY      | Ν  | Mor                                          | nthly average (µg/m) |                 |
|---------|----|----------------------------------------------|----------------------|-----------------|
| 201314  | IN | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr     | 8  | 68                                           | 51                   | 36              |
| May     | 10 | 67                                           | 47                   | 35              |
| Jun     |    |                                              |                      |                 |
| Jul     | 8  | 57                                           | 31                   | 24              |
| Aug     | 8  | 60                                           | 34                   | 24              |
| Sep     | 8  | 64                                           | 35                   | 26              |
| Oct     | 9  | 85                                           | 43                   | 32              |
| Nov     | 8  | 85                                           | 43                   | 33              |
| Dec     | 8  | 83                                           | 43                   | 33              |
| Jan     | 8  | 70                                           | 40                   | 33              |
| Feb     | 8  | 78                                           | 29                   | 23              |
| Mar     | 9  | 78                                           | 39                   | 32              |
| Total N |    | % of exceedence of daily readings for 201314 |                      |                 |
| 92      |    | 0.0                                          | 0.0                  | 0.0             |

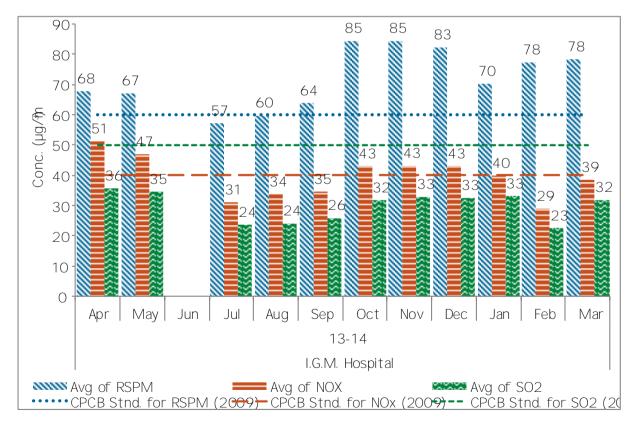



Figure No. 84 Monthly average reading recorded atGM Hospital -Bhiwandi



| Year            | Ν  | Annual average (µg∕m³) |      |      |
|-----------------|----|------------------------|------|------|
|                 |    | RSPM                   | NO x | SO 2 |
| Annual Standard |    | 60                     | 40   | 50   |
| 0405            |    |                        |      |      |
| 0506            |    |                        |      |      |
| 0607            |    |                        |      |      |
| 07-08           |    |                        |      |      |
| 0809            |    |                        |      |      |
| 0910            |    |                        |      |      |
| 10-11           |    |                        |      |      |
| 11-12           | 26 | 62                     | 29   | 23   |
| 12-13           | 96 | 63                     | 35   | 26   |
| 13-14           | 92 | 72                     | 40   | 30   |

Table No. 70 Data for annual average trend of RSPM, NQ and SO2 at I.G.M. Hospital

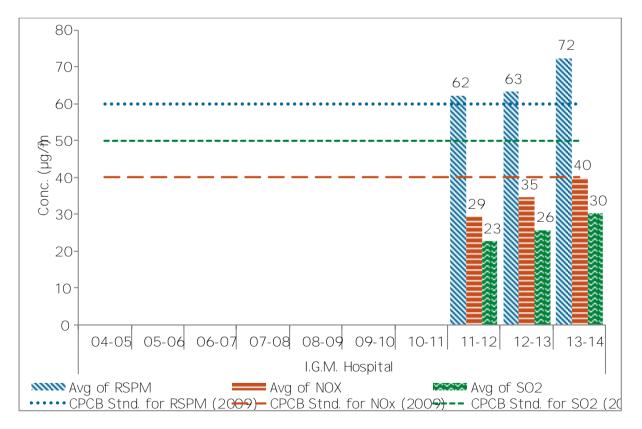



Figure No. 85 Annual average trend of SO<sub>2</sub>, NOx and RSPM at IGM Hospital -Bhiwandi



#### Bhiwandi - Prematai hall

| FY      | Ν  | Mor                                          | nthly average (µg/m) |                 |
|---------|----|----------------------------------------------|----------------------|-----------------|
| 201314  | IN | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr     | 10 | 67                                           | 47                   | 35              |
| May     | 8  | 66                                           | 34                   | 25              |
| Jun     |    |                                              |                      |                 |
| Jul     | 9  | 49                                           | 23                   | 17              |
| Aug     | 8  | 59                                           | 35                   | 23              |
| Sep     | 10 | 70                                           | 38                   | 27              |
| Oct     | 8  | 68                                           | 44                   | 35              |
| Nov     | 8  | 70                                           | 44                   | 36              |
| Dec     | 8  | 70                                           | 45                   | 36              |
| Jan     | 10 | 80                                           | 42                   | 33              |
| Feb     | 8  | 47                                           | 23                   | 23              |
| Mar     | 10 | 80                                           | 42                   | 33              |
| Total N |    | % of exceedence of daily readings for 201314 |                      |                 |
|         | 97 | 0.0                                          | 0.0                  | 0.0             |

Table No. 71: Data for monthly average reading recorded Arematai hall

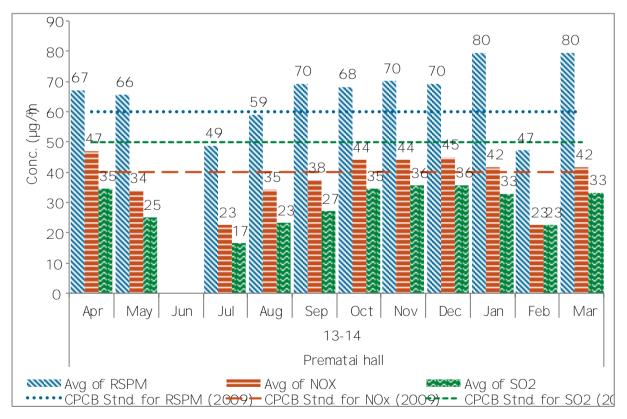



Figure No. 86 Monthly average reading recorded a Premataihall -Bhiwandi



| Year            | Ν   | Annu | ual average (µg/n | n <sup>3</sup> ) |
|-----------------|-----|------|-------------------|------------------|
|                 |     | RSPM | NO x              | SO <sub>2</sub>  |
| Annual Standard |     | 60   | 40                | 50               |
| 0405            |     |      |                   |                  |
| 0506            |     |      |                   |                  |
| 0607            |     |      |                   |                  |
| 07-08           |     |      |                   |                  |
| 0809            |     |      |                   |                  |
| 0910            |     |      |                   |                  |
| 10-11           |     |      |                   |                  |
| 11-12           | 103 | 52   | 23                | 15               |
| 12-13           | 102 | 59   | 33                | 24               |
| 13-14           | 97  | 66   | 38                | 29               |

Table No. 72 Data for annual average trend of RSPM, NQand SO2atPrematai hall

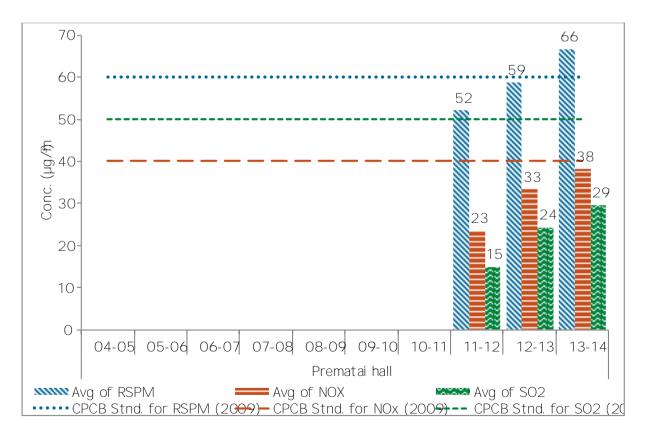



Figure No. 87. Annual average trend of SO<sub>2</sub>, NOx and RSPM at Premataihall -Bhiwandi



#### Dombivali

| FY      | Ν  | Mor           | nthly average (µg/m)   |            |
|---------|----|---------------|------------------------|------------|
| 201314  | IN | RSPM          | NO x                   | SO 2       |
| Apr     | 9  | 101           | 70                     | 36         |
| May     | 9  | 72            | 48                     | 41         |
| Jun     | 8  | 78            | 46                     | 30         |
| Jul     | 8  | 73            | 39                     | 25         |
| Aug     | 8  | 80            | 45                     | 23         |
| Sep     | 8  | 50            | 35                     | 26         |
| Oct     | 9  | 95            | 59                     | 25         |
| Nov     | 7  | 111           | 59                     | 22         |
| Dec     | 9  | 111           | 59                     | 22         |
| Jan     | 9  | 231           | 135                    | 85         |
| Feb     | 6  | 243           | 139                    | 49         |
| Mar     |    |               |                        |            |
| Total N |    | % of exceeder | nceof daily readings f | for 201314 |
|         | 90 | 37.8          | 24.4                   | 4.4        |

Table No. 73 Data for monthly average reading recorded atombivali

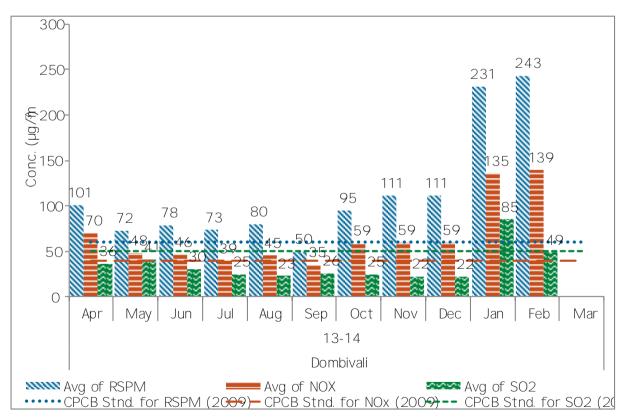



Figure No. 88 Monthly average reading recorded a Dombivali





| Year            | Ν  | Annı | Annual av erage (µg/m) |                 |  |  |
|-----------------|----|------|------------------------|-----------------|--|--|
|                 |    | RSPM | NO x                   | SO <sub>2</sub> |  |  |
| Annual Standard |    | 60   | 40                     | 50              |  |  |
| 0405            | 55 | 71   | 38                     | 42              |  |  |
| 0506            | 96 | 109  | 52                     | 35              |  |  |
| 0607            | 93 | 120  | 38                     | 24              |  |  |
| 07-08           | 96 | 98   | 41                     | 37              |  |  |
| 0809            | 25 | 68   | 55                     | 34              |  |  |
| 0910            |    |      |                        |                 |  |  |
| 10-11           |    |      |                        |                 |  |  |
| 11-12           |    |      |                        |                 |  |  |
| 12-13           | 92 | 123  | 94                     | 50              |  |  |
| 13-14           | 90 | 111  | 66                     | 35              |  |  |

Table No. 74 Data for annual average trend of RSPM, NQand SO2atDombivali

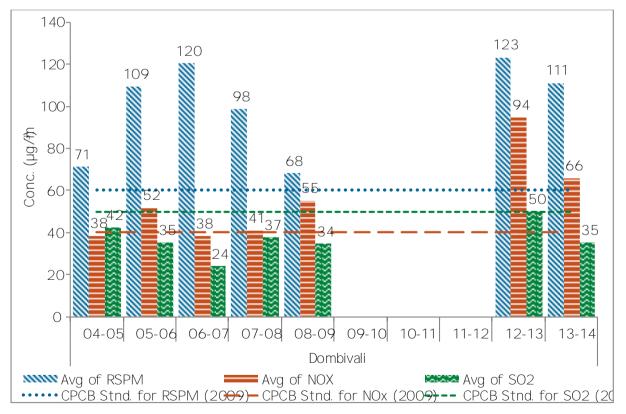



Figure No. 89 Annual average trend of SO2, NOx and RSPM at Dombivali



#### Dombivali - MIDC Office Dombivali

| FY     | N       | Mc                                           | onthly average (µg/m³ | 3)   |
|--------|---------|----------------------------------------------|-----------------------|------|
| 201314 | IN      | RSPM                                         | NO x                  | SO 2 |
| Apr    | 9       | 81                                           | 55                    | 34   |
| May    |         |                                              |                       |      |
| Jun    | 9       | 67                                           | 36                    | 32   |
| Jul    | 7       | 75                                           | 44                    | 22   |
| Aug    | 8       | 66                                           | 37                    | 22   |
| Sep    | 9       | 64                                           | 38                    | 19   |
| Oct    | 9       | 55                                           | 30                    | 23   |
| Nov    | 8       | 106                                          | 56                    | 22   |
| Dec    | 9       | 135                                          | 73                    | 19   |
| Jan    | 9       | 201                                          | 115                   | 77   |
| Feb    | 8       | 237                                          | 135                   | 50   |
| Mar    |         |                                              |                       |      |
|        | Total N | % of exceedence of daily readings for 201314 |                       |      |
|        | 85      | 36.5                                         | 21.2                  | 5.9  |

Table No. 75 Data for monthly average reading recorded at IDC Office Dom bivali

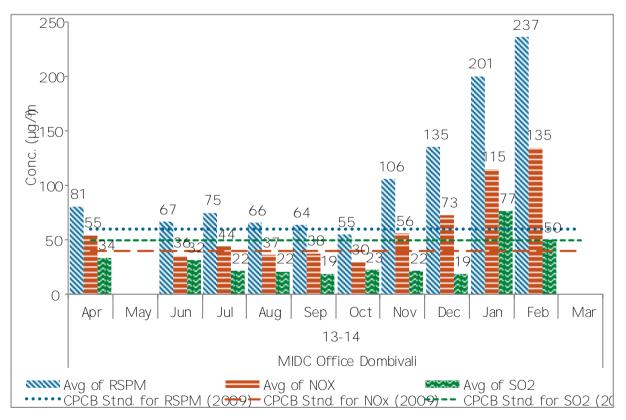



Figure No. 90 Monthly average reading recorded at MIDC Office -Dombivali



| Year            | Ν  | Annual average (µg∕m³) |      |                 |  |
|-----------------|----|------------------------|------|-----------------|--|
|                 |    | RSPM                   | NO x | SO <sub>2</sub> |  |
| Annual Standard |    | 60                     | 40   | 50              |  |
| 0405            |    |                        |      |                 |  |
| 0506            |    |                        |      |                 |  |
| 0607            |    |                        |      |                 |  |
| 07-08           |    |                        |      |                 |  |
| 0809            |    |                        |      |                 |  |
| 0910            |    |                        |      |                 |  |
| 10-11           |    |                        |      |                 |  |
| 11-12           |    |                        |      |                 |  |
| 12-13           | 74 | 86                     | 61   | 37              |  |
| 13-14           | 85 | 109                    | 62   | 32              |  |

Table No. 76 Data for annual average trend of RSPM, NQ and SO2 at MIDC Office DOmbivali

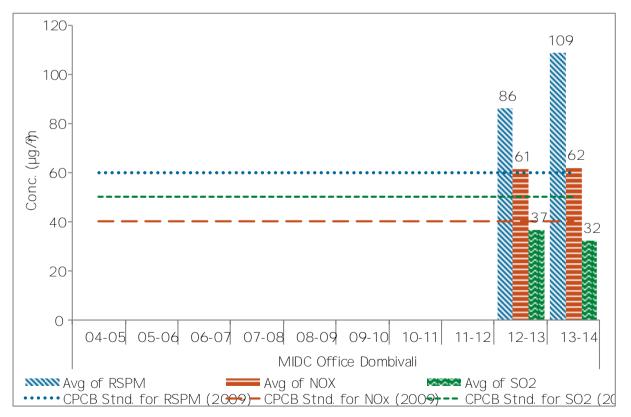



Figure No. 91: Annual average trend of SO $_{2}$ , NOx and RSPM at MIDC Office  $\$ -Dombivali



#### Kalyan - MPCB RO Kalyan office

| FY     | Ν       | Mor                                          | nthly average (µg/m³) |                 |
|--------|---------|----------------------------------------------|-----------------------|-----------------|
| 201314 | IN      | RSPM                                         | NO x                  | SO <sub>2</sub> |
| Apr    | 8       | 66                                           | 34                    | 25              |
| May    | 8       | 68                                           | 51                    | 36              |
| Jun    |         |                                              |                       |                 |
| Jul    | 10      | 59                                           | 32                    | 24              |
| Aug    | 8       | 63                                           | 33                    | 26              |
| Sep    | 10      | 67                                           | 42                    | 36              |
| Oct    |         |                                              |                       |                 |
| Nov    | 10      | 83                                           | 38                    | 35              |
| Dec    |         |                                              |                       |                 |
| Jan    |         |                                              |                       |                 |
| Feb    | 8       | 71                                           | 34                    | 25              |
| Mar    | 8       | 76                                           | 42                    | 35              |
|        | Total N | % of exceedence of daily readings for 201314 |                       |                 |
| 70     |         | 0.0                                          | 0.0                   | 0.0             |

Table No. 77. Data for monthly average reading recorded at IPCB RO Kalyan office

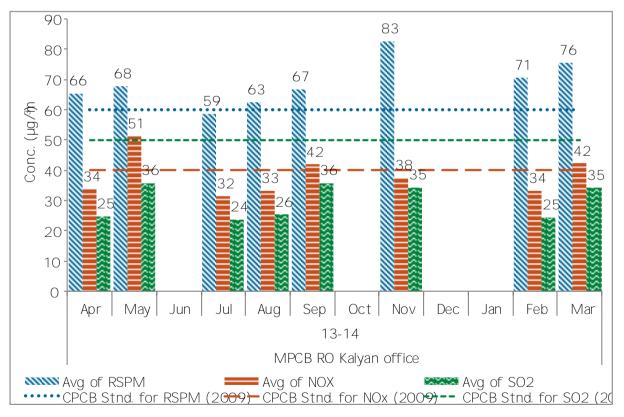



Figure No. 92 Monthly average reading recorded at MPCB RO Kalyan Office





| Year            | Ν               | Ar   | inual average (µg/r | m³)             |
|-----------------|-----------------|------|---------------------|-----------------|
|                 |                 | RSPM | NO x                | SO <sub>2</sub> |
| Annual Standard | Annual Standard |      | 40                  | 50              |
| 0405            |                 |      |                     |                 |
| 0506            |                 |      |                     |                 |
| 0607            |                 |      |                     |                 |
| 07-08           |                 |      |                     |                 |
| 0809            |                 |      |                     |                 |
| 0910            |                 |      |                     |                 |
| 10-11           |                 |      |                     |                 |
| 11-12           | 82              | 71   | 34                  | 22              |
| 12-13           | 103             | 65   | 38                  | 29              |
| 13-14           | 70              | 69   | 38                  | 30              |

Table No. 78 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at MPCB RO Kalyan office

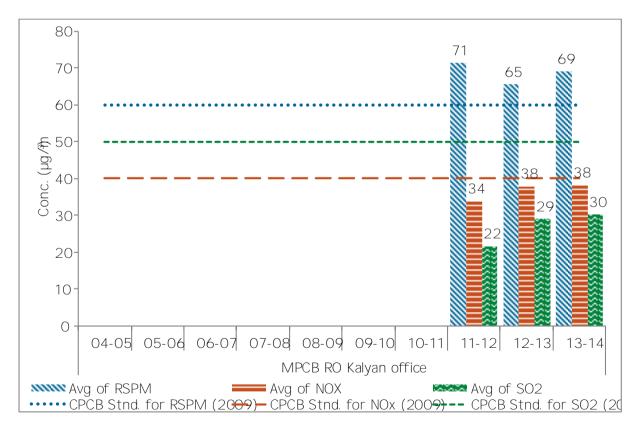



Figure No. 93 Annual average trend of SO<sub>2</sub>, NOx and RSPM at MPCB RO Kalyan Office



#### Ulhasnagar - Smt. CHM College Campus

Table No. 79 Data for monthly average reading recorded  ${\rm atm}\, t.\, {\rm CHM}$  College Campus , Ulhasnagar

| FY     | Ν       | Mor                                          | nthly average (µg/m) |                 |
|--------|---------|----------------------------------------------|----------------------|-----------------|
| 201314 | IN      | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr    | 8       | 70                                           | 46                   | 36              |
| May    | 9       | 47                                           | 29                   | 28              |
| Jun    | 8       | 59                                           | 31                   | 20              |
| Jul    | 8       | 61                                           | 35                   | 19              |
| Aug    | 8       | 55                                           | 30                   | 19              |
| Sep    | 9       | 48                                           | 24                   | 18              |
| Oct    | 9       | 54                                           | 31                   | 21              |
| Nov    | 8       | 65                                           | 31                   | 20              |
| Dec    | 13      | 72                                           | 38                   | 20              |
| Jan    | 9       | 105                                          | 56                   | 43              |
| Feb    | 8       | 111                                          | 59                   | 35              |
| Mar    |         |                                              |                      |                 |
|        | Total N | % of exceedence of daily readings for 201314 |                      |                 |
|        | 97      | 11.3                                         | 1.0                  | 0.0             |

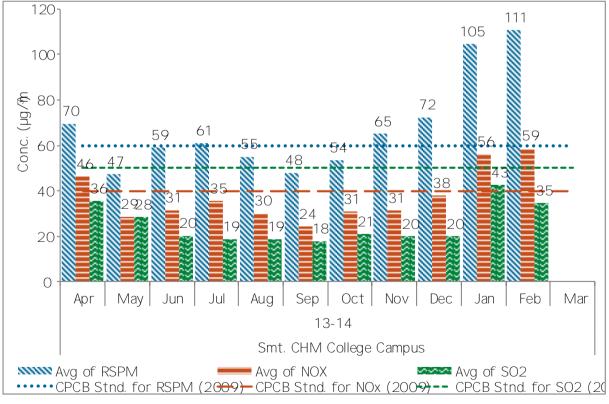



Figure No. 94 Monthly average reading recorded atSmt.CHM Collage Campus, Ulhasnagar



| Year            | Ν   | Annual average (µg/m³) |      |                 |  |  |
|-----------------|-----|------------------------|------|-----------------|--|--|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |  |  |
| Annual Standard |     | 60                     | 40   | 50              |  |  |
| 0405            |     |                        |      |                 |  |  |
| 0506            |     |                        |      |                 |  |  |
| 0607            | 75  | 159                    | 46   | 28              |  |  |
| 07-08           | 53  | 90                     | 42   | 31              |  |  |
| 0809            | 92  | 87                     | 57   | 30              |  |  |
| 0910            | 88  | 92                     | 70   | 46              |  |  |
| 10-11           | 99  | 99                     | 61   | 30              |  |  |
| 11-12           | 102 | 109                    | 64   | 37              |  |  |
| 12-13           | 100 | 85                     | 58   | 34              |  |  |
| 13-14           | 97  | 68                     | 37   | 25              |  |  |

Table No. 80 Data for annual average trend of RSPM,  $NO_{\!X}\,and\,SO_{\!2}atSmt.\,CHM$  College Campus , Ulhasnagar

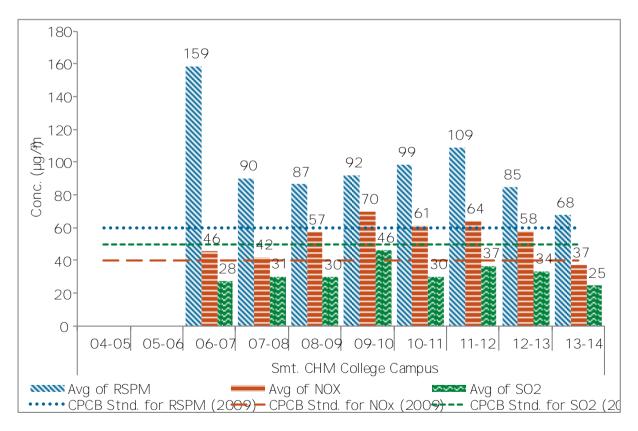



Figure No. 95 Annual average trend of SO $_{\!\!2}$ , NOx and RSPM at -Smt.CHM Collage Campus, Ulhasnagar





## Ulhasnagar - Powai Chowk

| FY     | Ν       | Monthly average (µg/m³)                      |      |      |  |
|--------|---------|----------------------------------------------|------|------|--|
| 201314 | IN      | RSPM                                         | NO x | SO 2 |  |
| Apr    | 8       | 87                                           | 59   | 36   |  |
| May    | 9       | 69                                           | 45   | 38   |  |
| Jun    | 6       | 66                                           | 53   | 51   |  |
| Jul    | 7       | 70                                           | 39   | 18   |  |
| Aug    | 8       | 77                                           | 39   | 20   |  |
| Sep    | 9       | 50                                           | 26   | 19   |  |
| Oct    | 9       | 74                                           | 46   | 21   |  |
| Nov    | 8       | 124                                          | 66   | 21   |  |
| Dec    | 9       | 138                                          | 75   | 19   |  |
| Jan    | 9       | 187                                          | 109  | 74   |  |
| Feb    | 8       | 135                                          | 73   | 48   |  |
| Mar    |         |                                              |      |      |  |
|        | Total N | % of exceedence of daily readings for 201314 |      |      |  |
|        | 90      | 35.6                                         | 16.7 | 5.6  |  |

Table No. 81: Data for monthly average reading recorded atowai Chowk, Ulhasnagar

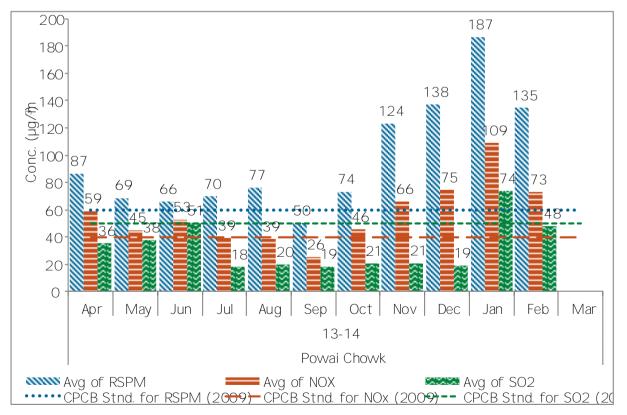



Figure No. 96 Monthly average reading recorded atPawai Chowk, Ulhasnagar



| Year            | Ν   | Anr  | nual average (µg/r | m³)  |
|-----------------|-----|------|--------------------|------|
|                 |     | RSPM | NO x               | SO 2 |
| Annual Standard |     | 60   | 40                 | 50   |
| 0405            |     |      |                    |      |
| 0506            |     |      |                    |      |
| 0607            | 89  | 121  | 38                 | 24   |
| 07-08           | 98  | 91   | 37                 | 25   |
| 0809            | 98  | 95   | 69                 | 33   |
| 0910            | 89  | 119  | 96                 | 53   |
| 10-11           | 96  | 114  | 69                 | 31   |
| 11-12           | 102 | 122  | 74                 | 43   |
| 12-13           | 101 | 106  | 81                 | 43   |
| 13-14           | 90  | 99   | 58                 | 33   |

Table No. 82 Data for annual average trend of RSPM, NQ and SO2 at Powai Chowk, Ulhasnagar

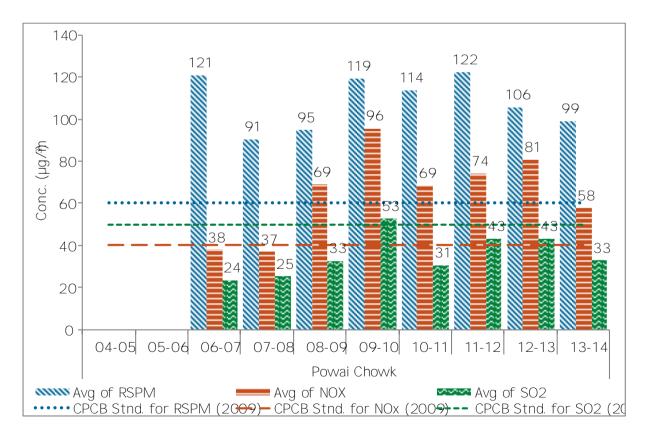



Figure No. 97. Annual average trend of SO<sub>2</sub>, NOx and RSPM at -Pawai Chowk, Ulhasnagar





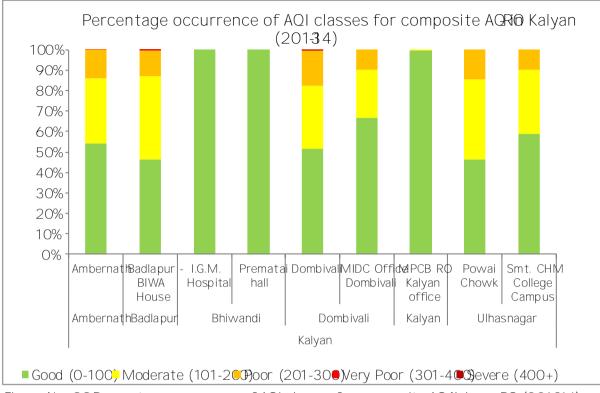
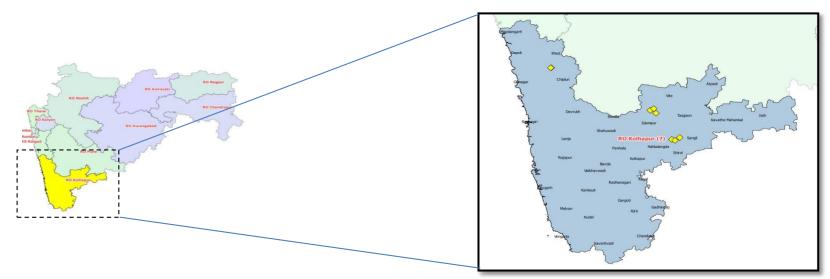




Figure No. 98 Percentage occurrence of AQI classes for composite AQ Kalyan -RO (201314)





# RO Ì Kolhapur



| MPCB RO  | Region    | Station<br>code | Station name                           | Туре                  | Latitude (deg)  | Longitude (deg) |
|----------|-----------|-----------------|----------------------------------------|-----------------------|-----------------|-----------------|
|          | Chiplun   | 489             | Chiplun - MIDC Chalkewadi              | Residential           | 17° 35' 16.8" N | 73° 29' 25.0" E |
|          | Chiplun   | 490             | Chiplun -Water Treatment               | Industrial            | 17° 35' 15.2" N | 73° 29' 13.7" E |
|          | Kolhapur  | 508             | Shivaji University Campus              | Residential           | 17° 07' 40.1" N | 74° 25' 16.9" E |
|          | Kolh apur | 509             | Ruikar Trust                           | Rural and other areas | 17° 10' 25.4" N | 74°24'10.1" E   |
| Kolhapur | Kolhapur  | 510             | Mahadwar Road                          | Residential           | 17° 09' 27.0" N | 74°22'10.6"E    |
|          | Sangli    | 574             | Terrace of SRQSangli, Udyog Bhavan     | Residential           | 16° 51' 11.8" N | 74°35'28.9"E    |
|          | Sangli    | 575             | Sangli -Miraj Primary Municipal school | Rural and other areas | 16° 51' 39.4" N | 74°33'52.5"E    |
|          | Sangli    | 576             | Krishna Valley school                  | Industrial            | 16° 52' 49.4" N | 74° 38' 02.3" E |

# Chiplun - Chiplun - MIDC Chalkewadi

| FY     | N       | Mor           | nthly average (µg/m)  |           |
|--------|---------|---------------|-----------------------|-----------|
| 201314 | IN      | RSPM          | NO x                  | SO 2      |
| Apr    |         |               |                       |           |
| May    | 8       | 48            | 9                     | 11        |
| Jun    | 6       | 147           | 2                     | 12        |
| Jul    | 8       | 184           | 7                     | 9         |
| Aug    | 8       | 182           | 9                     | 9         |
| Sep    | 8       | 172           | 10                    | 10        |
| Oct    | 8       | 91            | 10                    | 10        |
| Nov    | 8       | 107           | 10                    | 10        |
| Dec    | 8       | 102           | 10                    | 10        |
| Jan    | 8       | 117           | 11                    | 11        |
| Feb    | 8       | 131           | 10                    | 11        |
| Mar    |         |               |                       |           |
|        | Total N | % of exceeder | nce of daily readings | for201314 |
|        | 78      | 71.8          | 0.0                   | 0.0       |

Table No. 83 Data for monthly average reading recorded a Chiplun - MIDC Chalkewadi , Chiplun

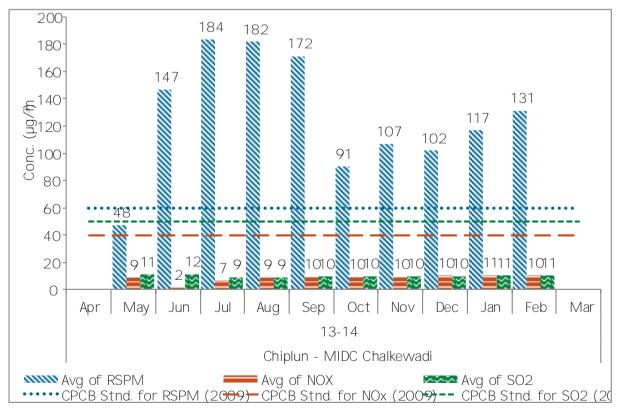



Figure No. 99 Monthly average reading recorded atMIDC Chalkewadi, Chiplun





| Year            | Ν               | Ann  | Annual average (µg/m³) |      |  |
|-----------------|-----------------|------|------------------------|------|--|
|                 |                 | RSPM | NO x                   | SO 2 |  |
| Annual Standard | Annual Standard |      | 40                     | 50   |  |
| 0405            |                 |      |                        |      |  |
| 0506            |                 |      |                        |      |  |
| 0607            | 43              | 85   | 11                     | 12   |  |
| 07-08           | 83              | 87   | 28                     | 23   |  |
| 0809            | 26              | 62   | 24                     | 25   |  |
| 0910            |                 |      |                        |      |  |
| 10-11           | 36              | 144  | 33                     | 59   |  |
| 11-12           | 24              | 38   | 15                     | 24   |  |
| 12-13           |                 |      |                        |      |  |
| 13-14           | 78              | 127  | 9                      | 10   |  |

Table No. 84 Data for annual average trend of RSPM, NQ and SO\_atChiplun  $\,$  - MIDC Chalkewadi , Chiplun

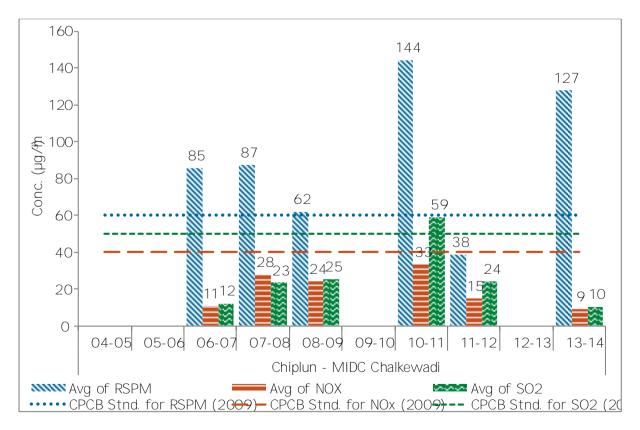



Figure No. 100 Annual average trend of SO<sub>2</sub> NOx and RSPM at -MIDC Chalkewadi, Chiplun



#### Chiplun - Chiplun - Water Treatment

Table No. 85 Data for monthly average reading recorded athiplun -Water Treatment

| FY     | Ν                                                   | Monthly average (µg/m³) |            |                 |
|--------|-----------------------------------------------------|-------------------------|------------|-----------------|
| 201314 |                                                     | RSPM                    | NO x       | SO <sub>2</sub> |
| Apr    |                                                     |                         |            |                 |
| May    | 8                                                   | 89                      | 9          | 11              |
| Jun    | 6                                                   | 135                     | 3          | 11              |
| Jul    | 8                                                   | 177                     | 8          | 9               |
| Aug    | 8                                                   | 186                     | 9          | 9               |
| Sep    | 8                                                   | 194                     | 10         | 10              |
| Oct    | 8                                                   | 88                      | 10         | 10              |
| Nov    | 8                                                   | 115                     | 10         | 10              |
| Dec    | 8                                                   | 111                     | 10         | 10              |
| Jan    | 8                                                   | 102                     | 11         | 11              |
| Feb    | 6                                                   | 134                     | 10         | 11              |
| Mar    |                                                     |                         |            |                 |
|        | Total N% of exceedence of daily readings for 201314 |                         | for 201314 |                 |
|        | 76                                                  | 78.9                    | 0.0        | 0.0             |

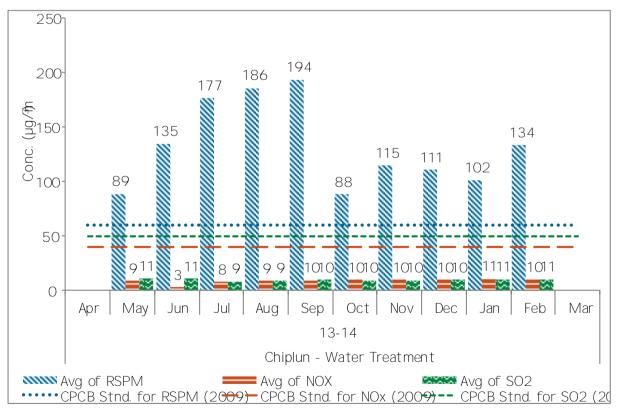



Figure No. 101: Monthly average reading recorded at-Chiplun - Water Treatment





| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            | 2   | 54                     | 0    | 21   |
| 0607            | 105 | 67                     | 10   | 32   |
| 07-08           | 105 | 73                     | 23   | 20   |
| 0809            | 25  | 44                     | 22   | 25   |
| 0910            |     |                        |      |      |
| 10-11           | 44  | 129                    | 31   | 54   |
| 11-12           | 33  | 45                     | 15   | 25   |
| 12-13           |     |                        |      |      |
| 13-14           | 76  | 133                    | 9    | 10   |

| Table No. 86 Data for annual average trend of RSPM, NQ and SO 2 at Chiplun - W | Water Treatment |
|--------------------------------------------------------------------------------|-----------------|
|--------------------------------------------------------------------------------|-----------------|

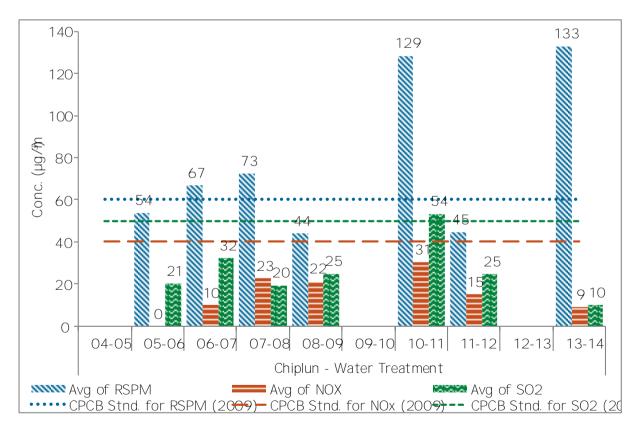
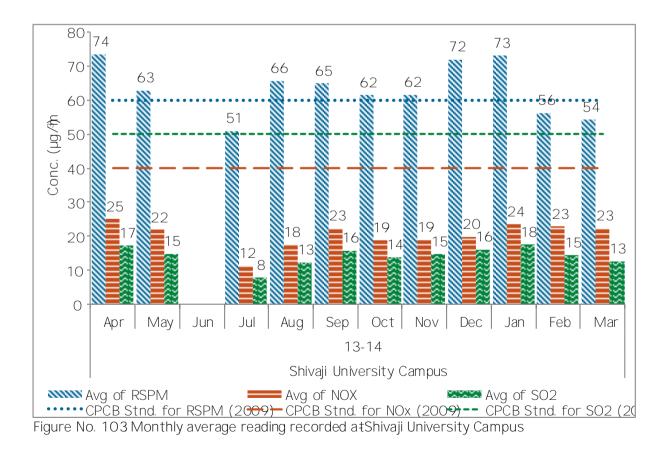



Figure No. 102 Annual average trend of SO $_2$ , NOx and RSPM at Chiplun - Water Treatment






#### Kolhapur - Shivaji University Campus

| FY         | Ν                                                    | Mor  | nthly average (µg/m) |                 |
|------------|------------------------------------------------------|------|----------------------|-----------------|
| 201314     | IN                                                   | RSPM | NO x                 | SO <sub>2</sub> |
| Apr        | 9                                                    | 74   | 25                   | 17              |
| May        | 1                                                    | 63   | 22                   | 15              |
| Jun        |                                                      |      |                      |                 |
| Jul        | 9                                                    | 51   | 12                   | 8               |
| Aug        | 9                                                    | 66   | 18                   | 13              |
| Sep        | 2                                                    | 65   | 23                   | 16              |
| Oct        | 2                                                    | 62   | 19                   | 14              |
| Nov        | 7                                                    | 62   | 19                   | 15              |
| Dec        | 9                                                    | 72   | 20                   | 16              |
| Jan        | 9                                                    | 73   | 24                   | 18              |
| Feb        | 8                                                    | 56   | 23                   | 15              |
| Mar        | 9                                                    | 54   | 23                   | 13              |
|            | Total N % of exceedence of daily readings for 201314 |      |                      | for 201314      |
| 74 0.0 0.0 |                                                      |      | 0.0                  |                 |

Table No. 87. Data for monthly average reading recorded & hivaji University Campus





| Year            | Ν               | Annual average (µg/m³) |      |                 |
|-----------------|-----------------|------------------------|------|-----------------|
|                 |                 | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard | Annual Standard |                        | 40   | 50              |
| 0405            |                 |                        |      |                 |
| 05-06           | 88              | 40                     | 7    | 4               |
| 0607            | 101             | 44                     | 7    | 5               |
| 07-08           | 104             | 46                     | 3    | 5               |
| 0809            | 80              | 62                     | 10   | 8               |
| 0910            | 96              | 55                     | 4    | 8               |
| 10-11           | 104             | 56                     | 9    | 9               |
| 11-12           | 113             | 60                     | 13   | 10              |
| 12-13           | 104             | 61                     | 18   | 12              |
| 13-14           | 74              | 64                     | 20   | 14              |

Table No. 88 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atShivaji University Campus

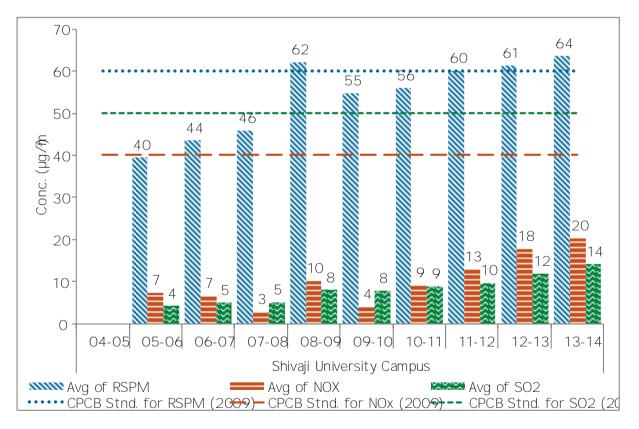



Figure No. 104 Annual average trend of SO<sub>2</sub>, NOx and RSPM at -Shivaji University Campus





#### Kolhapur - Ruikar Trust

Table No. 89 Data for monthly average reading recorded a Ruikar Trust, Kolhapur

| FY           | Ν       | Moi           | nthly average (µg/m)   |                 |
|--------------|---------|---------------|------------------------|-----------------|
| 201314       | IN      | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr          | 9       | 166           | 58                     | 28              |
| May          | 9       | 178           | 55                     | 26              |
| Jun          | 8       | 76            | 22                     | 15              |
| Jul          | 9       | 68            | 24                     | 14              |
| Aug          | 9       | 92            | 29                     | 20              |
| Sep          | 8       | 119           | 39                     | 28              |
| Oct          | 9       | 139           | 47                     | 30              |
| Nov          | 9       | 123           | 43                     | 26              |
| Dec          | 9       | 149           | 53                     | 30              |
| Jan          | 9       | 192           | 66                     | 36              |
| Feb          | 7       | 211           | 75                     | 39              |
| Mar          | 8       | 186           | 65                     | 37              |
|              | Total N | % of exceeder | nceof daily readings f | or 201314       |
| 103 75.7 1.9 |         | 0.0           |                        |                 |

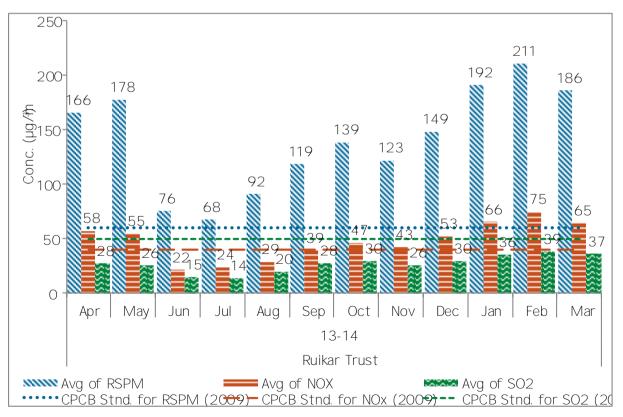



Figure No. 105 Monthly average reading recorded atRuikar Trust Kolhapur



| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            | 84  | 108                    | 45   | 12   |
| 0607            | 101 | 96                     | 39   | 11   |
| 07-08           | 103 | 95                     | 27   | 10   |
| 0809            | 102 | 100                    | 27   | 16   |
| 0910            | 92  | 99                     | 20   | 16   |
| 10-11           | 102 | 105                    | 27   | 21   |
| 11-12           | 105 | 116                    | 33   | 24   |
| 12-13           | 103 | 159                    | 42   | 27   |
| 13-14           | 103 | 141                    | 48   | 27   |

Table No. 90 Data for annual average trend of RSPM, NQand SO2atRuikar Trust, Kolhapur

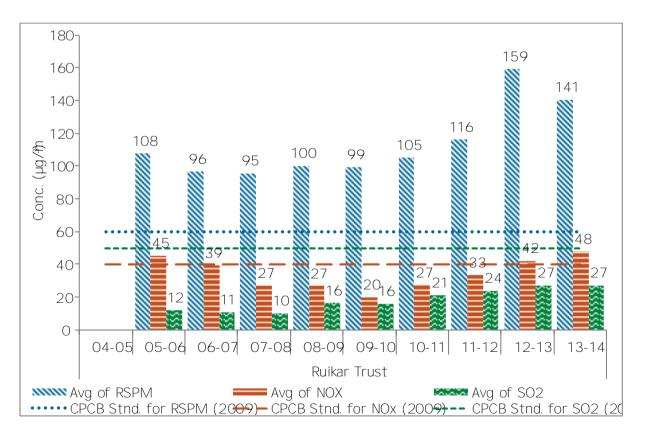



Figure No. 106 Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Ruikar Trust Kolhapur





#### Kolhapur - Mahadwar Road

| FY                                                  | Ν  | Mor        | nthly average (µg/m | ¥)              |
|-----------------------------------------------------|----|------------|---------------------|-----------------|
| 201314                                              | IN | RSPM       | NO x                | SO <sub>2</sub> |
| Apr                                                 | 8  | 136        | 49                  | 26              |
| May                                                 | 9  | 139        | 36                  | 23              |
| Jun                                                 | 8  | 70         | 19                  | 13              |
| Jul                                                 | 5  | 62         | 18                  | 10              |
| Aug                                                 | 8  | 82         | 26                  | 17              |
| Sep                                                 | 8  | 106        | 32                  | 26              |
| Oct                                                 | 9  | 121        | 35                  | 27              |
| Nov                                                 | 9  | 101        | 31                  | 22              |
| Dec                                                 | 7  | 116        | 41                  | 25              |
| Jan                                                 | 9  | 136        | 50                  | 29              |
| Feb                                                 | 8  | 131        | 49                  | 28              |
| Mar                                                 | 9  | 126        | 47                  | 30              |
| Total N% of exceedence of daily readings for 201314 |    | for 201314 |                     |                 |
|                                                     | 97 | 68.0       | 0.0                 | 0.0             |

Table No. 91: Data for monthly average reading corded at-Mahadwar Road Kolhapur

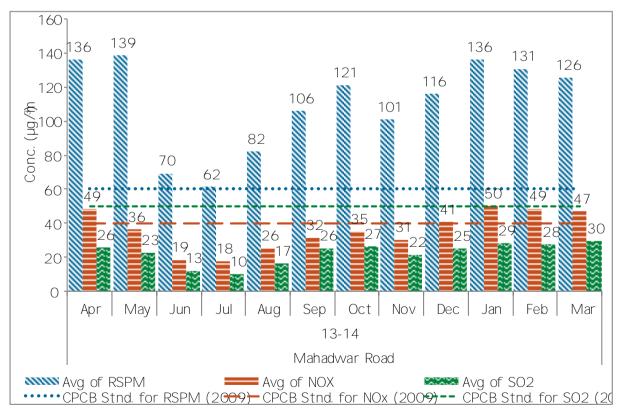



Figure No. 107 Monthly average reading recorded alt Mahadwar Road





| Year            | Ν               | Annual average (µg/m³) |      |                 |
|-----------------|-----------------|------------------------|------|-----------------|
|                 |                 | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard | Annual Standard |                        | 40   | 50              |
| 0405            |                 |                        |      |                 |
| 0506            | 79              | 69                     | 28   | 8               |
| 0607            | 99              | 64                     | 21   | 8               |
| 07-08           | 91              | 75                     | 11   | 8               |
| 0809            | 100             | 84                     | 17   | 12              |
| 0910            | 103             | 86                     | 15   | 13              |
| 10-11           | 104             | 92                     | 21   | 17              |
| 11-12           | 97              | 102                    | 26   | 20              |
| 12-13           | 102             | 136                    | 35   | 25              |
| 13-14           | 97              | 113                    | 37   | 23              |

Table No. 92 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at -Mahadwar Road Kolhapur

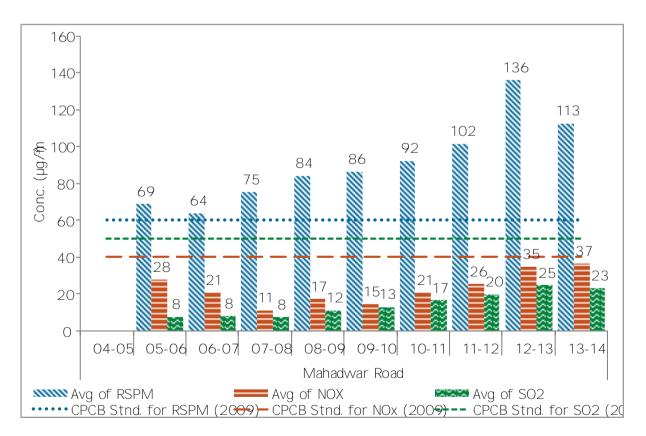



Figure No. 108Annual average trend of SO<sub>2</sub>, NOx and RSPM at I Mahadwar Road





#### Sangli - Terrace of SRQSangli, Udyog Bhavan

Table No. 93 Data for monthly average reading recorded alterrace of SRO-Sangli, Udyog Bhavan

| FY                                       | Ν  | Mor                    | nthly average (µg/m) |                 |
|------------------------------------------|----|------------------------|----------------------|-----------------|
| 201314                                   | IN | RSPM                   | NO x                 | SO <sub>2</sub> |
| Apr                                      | 8  | 77                     | 43                   | 11              |
| May                                      | 9  | 63                     | 31                   | 9               |
| Jun                                      | 8  | 44                     | 24                   | 9               |
| Jul                                      | 9  | 31                     | 19                   | 9               |
| Aug                                      | 9  | 38                     | 20                   | 8               |
| Sep                                      | 9  | 30                     | 22                   | 7               |
| Oct                                      | 8  | 36                     | 25                   | 8               |
| Nov                                      | 9  | 64                     | 31                   | 8               |
| Dec                                      | 9  | 76                     | 49                   | 10              |
| Jan                                      | 9  | 113                    | 54                   | 6               |
| Feb                                      | 8  | 121                    | 60                   | 7               |
| Mar                                      | 9  | 139                    | 35                   | 14              |
| Total N% of exceedence of daily readings |    | nceof daily readings f | For 201314           |                 |
| 104 19.2 1.0                             |    | 0.0                    |                      |                 |

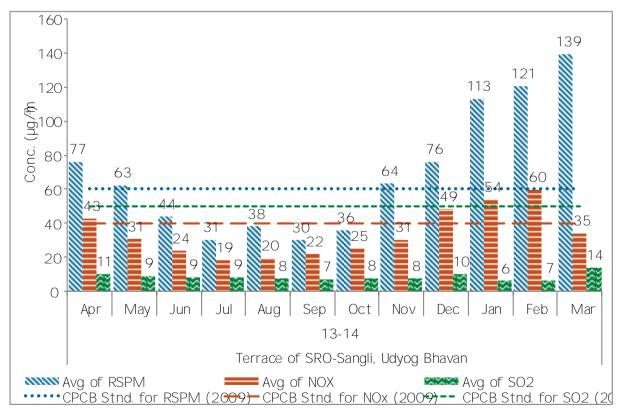



Figure No. 109 Monthly average reading recorded at Terrece of SRO -Sangli, Udyog Bhavan





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 05-06           |     |                        |      |                 |
| 0607            |     |                        |      |                 |
| 07-08           |     |                        |      |                 |
| 0809            | 69  | 57                     | 19   | 25              |
| 0910            | 102 | 54                     | 27   | 22              |
| 10-11           | 104 | 54                     | 29   | 12              |
| 11-12           | 105 | 63                     | 36   | 10              |
| 12-13           | 104 | 70                     | 39   | 10              |
| 13-14           | 104 | 69                     | 34   | 9               |

Table No. 94 Data for annual average trend of RSPM, NQ and SO\_atTerrace of SRO-Sangli, Udyog Bhavan

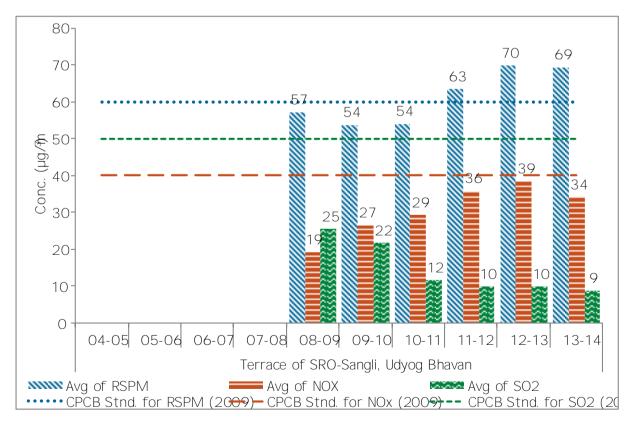



Figure No. 110 Annual average trend of SO $_{\!\!2}$  NOx and RSPM at -Terrece of SRO-Sangli, Udyog Bhavan



#### Sangli - Sangli-Miraj Primary Municipal school

Table No. 95 Data for monthly average reading recorded angli -Miraj Primary Municipal school

| FY     | Ν       | Mor           | nthly average (µg/m)   |                 |
|--------|---------|---------------|------------------------|-----------------|
| 201314 | IN IN   | RSPM          | NOx                    | SO <sub>2</sub> |
| Apr    | 9       | 67            | 35                     | 8               |
| May    | 9       | 58            | 32                     | 11              |
| Jun    | 9       | 40            | 25                     | 10              |
| Jul    | 8       | 30            | 18                     | 9               |
| Aug    | 9       | 36            | 20                     | 9               |
| Sep    | 9       | 38            | 24                     | 8               |
| Oct    | 9       | 53            | 36                     | 9               |
| Nov    | 8       | 98            | 50                     | 10              |
| Dec    | 9       | 127           | 65                     | 10              |
| Jan    | 9       | 141           | 72                     | 10              |
| Feb    | 8       | 127           | 65                     | 8               |
| Mar    |         |               |                        |                 |
|        | Total N | % of exceeder | nceof daily readings f | for 201314      |
| 96     |         | 27.1          | 6.3                    | 0.0             |

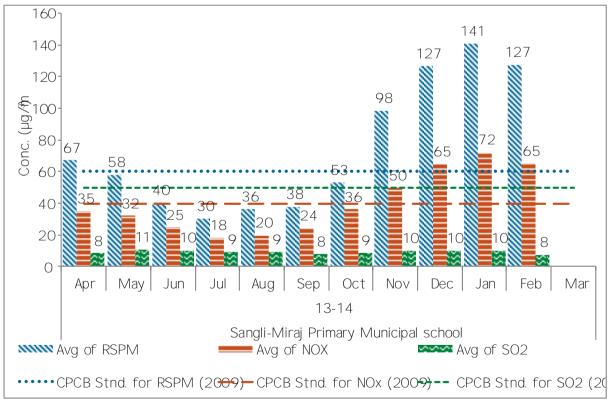



Figure No. 111: Monthly average reading recorded atSangli -Miraj Primary Municipal school



| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            |     |                        |      |      |
| 0607            |     |                        |      |      |
| 07-08           |     |                        |      |      |
| 0809            | 14  | 87                     | 23   | 22   |
| 0910            | 101 | 68                     | 32   | 23   |
| 10-11           | 105 | 69                     | 32   | 13   |
| 11-12           | 104 | 72                     | 36   | 10   |
| 12-13           | 102 | 79                     | 44   | 11   |
| 13-14           | 96  | 74                     | 40   | 9    |

Table No. 96 Data for annual average trend of RSPM, NQ and SO\_2 at Sangli -Miraj Primary Municipal school

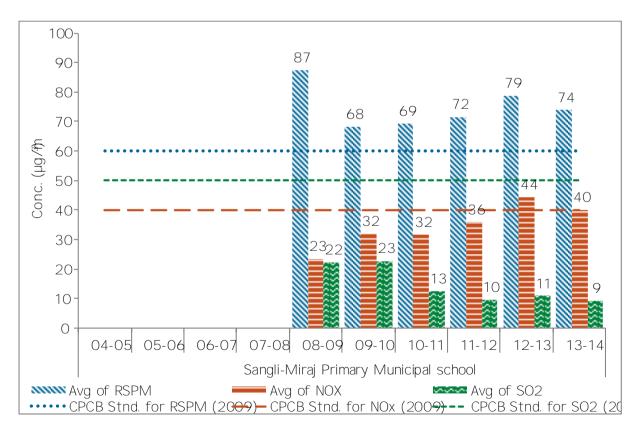



Figure No. 112 Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Sangli -Miraj Primary Municipal school





## Sangli - Krishna Valley school

| FY     | Ν       | Monthly average (µg/m) |                        |            |
|--------|---------|------------------------|------------------------|------------|
| 201314 | IN      | RSPM                   | NO x                   | SO 2       |
| Apr    | 8       | 119                    | 46                     | 12         |
| May    | 9       | 68                     | 33                     | 11         |
| Jun    | 9       | 54                     | 29                     | 10         |
| Jul    | 9       | 35                     | 17                     | 9          |
| Aug    | 9       | 57                     | 21                     | 11         |
| Sep    | 8       | 48                     | 26                     | 9          |
| Oct    | 9       | 85                     | 34                     | 10         |
| Nov    | 9       | 81                     | 40                     | 10         |
| Dec    | 8       | 120                    | 53                     | 11         |
| Jan    | 9       | 144                    | 42                     | 9          |
| Feb    | 8       | 156                    | 49                     | 12         |
| Mar    | 9       | 179                    | 52                     | 13         |
|        | Total N | % of exceeder          | nceof daily readings f | for 201314 |
|        | 104     | 38.5                   | 1.9                    | 0.0        |

Table No. 97. Data for monthly average reading corded a Krishna Valley school

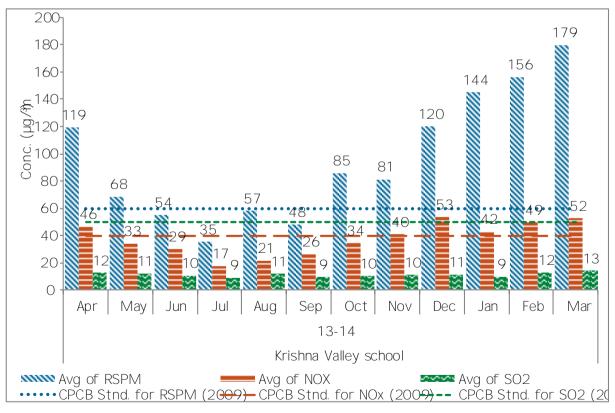



Figure No. 113 Monthly average reading recorded atKrishna Valley School



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            |     |                        |      |                 |
| 07-08           |     |                        |      |                 |
| 0809            | 70  | 71                     | 21   | 26              |
| 0910            | 102 | 82                     | 34   | 24              |
| 10-11           | 104 | 75                     | 30   | 12              |
| 11-12           | 105 | 89                     | 36   | 10              |
| 12-13           | 103 | 97                     | 43   | 12              |
| 13-14           | 104 | 95                     | 37   | 11              |

Table No. 98 Data for annual average trend of RSPM, NO<sub>k</sub> and SO<sub>2</sub>atKrishna Valley school

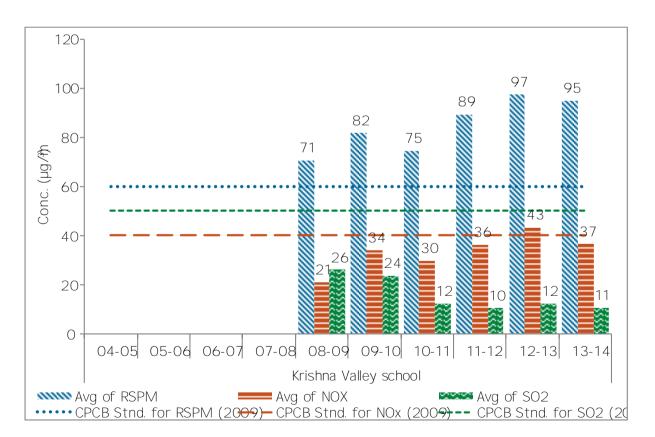



Figure No. 114: Annual average trend of SO<sub>2</sub>, NOx and RSPM at -Krishna Valley School



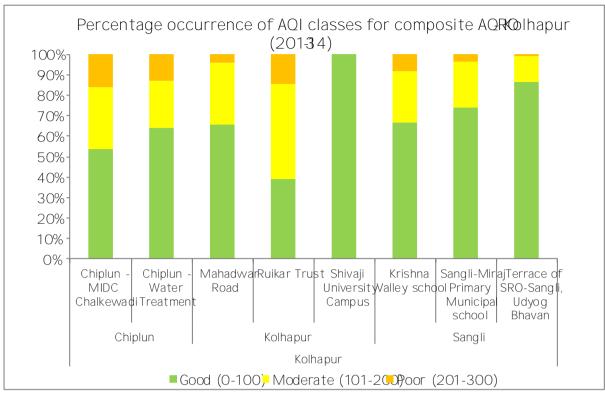



Figure No. 115 Percentage occurrence f AQI classes for composite AQ inKolhapur -RO (201314)









| MPCB RO | Region | Station<br>code | Station name | Туре        | Latitude (deg)  | Longitude (deg) |
|---------|--------|-----------------|--------------|-------------|-----------------|-----------------|
| Mumbai  | Mumbai |                 | Bandra       | Residential | 19° 03' 47.1" N | 72° 50' 47.2" E |
| Mumbai  | Mumbai |                 | Sion         | Residential | 19°02'07.9"N    | 72° 51' 35.3" E |

## Mumbai - Bandra

| FY      | - N - | Mor           | nthly average (µg/m)   |            |
|---------|-------|---------------|------------------------|------------|
| 201314  |       | RSPM          | NO x                   | SO 2       |
| Apr     | 30    | 109           | 27                     | 20         |
| May     | 31    | 89            | 23                     | 18         |
| Jun     | 29    | 70            | 16                     | 20         |
| Jul     | 29    | 76            | 19                     | 18         |
| Aug     | 28    | 73            | 19                     | 19         |
| Sep     | 29    | 50            | 35                     | 17         |
| Oct     | 31    | 79            | 55                     | 17         |
| Nov     | 30    | 152           | 113                    | 23         |
| Dec     | 27    | 156           | 121                    | 26         |
| Jan     | 31    | 141           | 79                     | 31         |
| Feb     | 27    | 141           | 39                     | 23         |
| Mar     | 27    | 142           | 38                     | 12         |
| Total N |       | % of exceeder | nceof daily readings f | for 201314 |
| 349     |       | 50.7          | 18.3                   | 0.0        |

Table No. 99 Data for monthly average reading recorded at andra

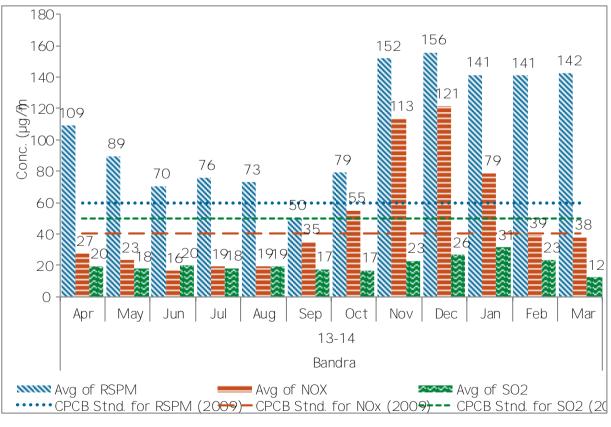



Figure No. 116 Monthly average reading recorded atBandra



| Year            | Ν   | Annual average (µg/m³) |      |      |  |
|-----------------|-----|------------------------|------|------|--|
|                 |     | RSPM                   | NO x | SO 2 |  |
| Annual Standard |     | 60                     | 40   | 50   |  |
| 0405            |     |                        |      |      |  |
| 0506            |     |                        |      |      |  |
| 0607            |     |                        |      |      |  |
| 07-08           | 233 | 158                    | 59   | 19   |  |
| 0809            | 335 | 137                    | 60   | 19   |  |
| 0910            | 339 | 140                    | 90   | 17   |  |
| 10-11           | 349 | 116                    | 48   | 19   |  |
| 11-12           | 353 | 131                    | 65   | 21   |  |
| 12-13           | 355 | 116                    | 48   | 18   |  |
| 13-14           | 349 | 106                    | 49   | 20   |  |

Table No. 100 Data for annual average trend of RSPM, NQ and SO 2 at Bandra

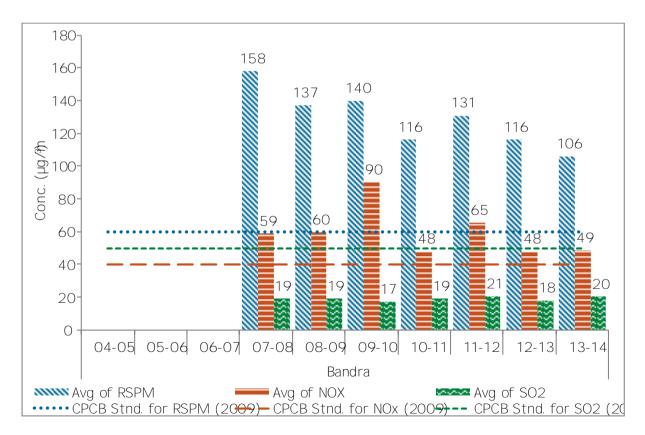



Figure No. 117: Annual average trend of SO<sub>2</sub>, NOx and RSPM at -Bandra





#### Mumbai - Sion

| FY      | N     | M            | onthly average (µg/n  | P)              |
|---------|-------|--------------|-----------------------|-----------------|
| 201314  | IN IN | RSPM         | NO x                  | SO <sub>2</sub> |
| Apr     | 22    | 149          | 110                   | 5               |
| May     | 22    | 110          | 85                    | 4               |
| Jun     | 17    | 72           | 84                    | 4               |
| Jul     | 21    | 71           | 64                    | 4               |
| Aug     | 25    | 70           | 59                    | 3               |
| Sep     | 25    | 79           | 98                    | 4               |
| Oct     | 26    | 134          | 134                   | 4               |
| Nov     | 23    | 151          | 178                   | 4               |
| Dec     | 27    | 177          | 117                   | 12              |
| Jan     | 25    | 207          | 146                   | 16              |
| Feb     | 22    | 179          | 116                   | 16              |
| Mar     | 25    | 151          | 97                    | 13              |
| Total N |       | % of exceede | enceof daily readings | s for 201314    |
| 280     |       | 65.7         | 73.2                  | 0.4             |

Table No. 101: Data for monthly average reading recorded ation

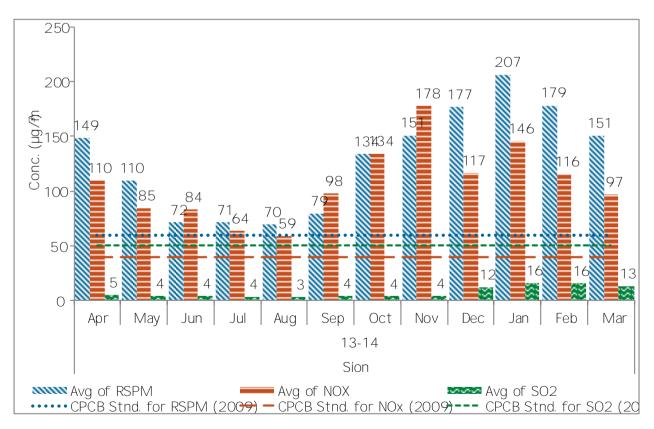



Figure. 118 Monthly average reading at Sion





| Year            | Ν   | Annual average (µg∕m³) |      |                 |  |
|-----------------|-----|------------------------|------|-----------------|--|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |  |
| Annual Standard |     | 60                     | 40   | 50              |  |
| 0405            | 266 | 197                    | 67   | 21              |  |
| 0506            | 317 | 231                    | 105  | 26              |  |
| 0607            | 276 | 255                    | 91   | 30              |  |
| 07-08           | 288 | 295                    | 139  | 28              |  |
| 0809            | 84  | 202                    | 97   | 24              |  |
| 0910            | 236 | 223                    | 109  | 18              |  |
| 10-11           | 259 | 181                    | 116  | 14              |  |
| 11-12           | 200 | 150                    | 66   | 10              |  |
| 12-13           | 245 | 136                    | 106  | 11              |  |
| 13-14           | 280 | 131                    | 108  | 8               |  |

Table No. 102 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atSion

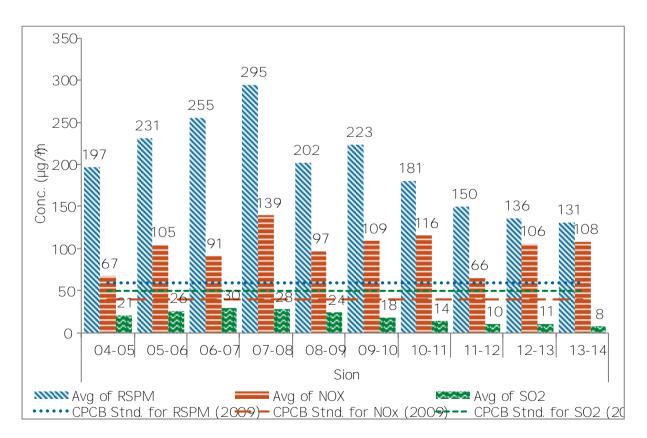
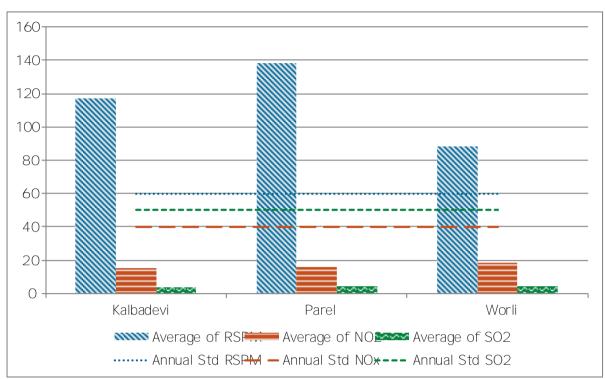




Figure No. 119 Annual av erage trend of SQ NOx and RSPM at -Sion







## AAQMS monitored by NEERI in Mumbai

Figure No. 120 Annual average trendof SO<sub>2</sub>, NOx and RSPM at AAQMS monitored by NEERI in Mumbai (201314)

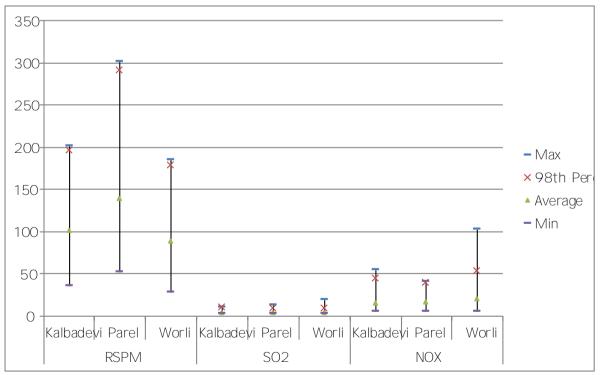



Figure No. 121: Parametric values of RSPM, SQ and NO  $\scriptstyle \times$  for AAQMS monitored by NEERI in Mumbai (201314)



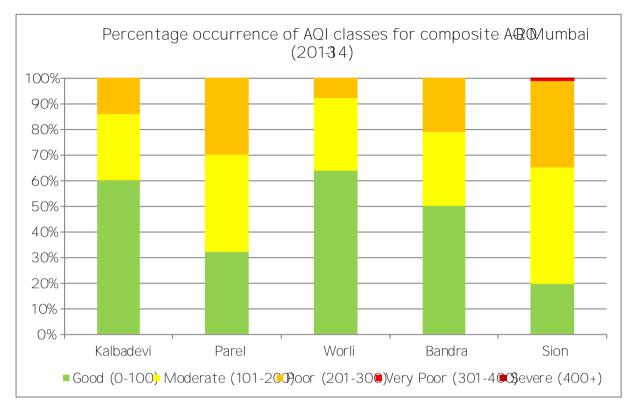
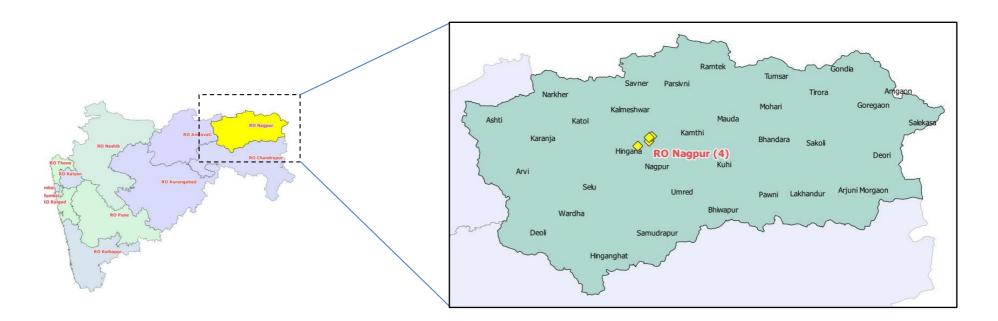




Figure No. 122Percentage occurrence of AQI classes for composite AQ Mumbai -RO (201314)





# RO Ì Nagpur



| MPCB RO | Region | Station<br>code | Station name                | Туре                     | Latitude (deg)  | Longitude (deg) |
|---------|--------|-----------------|-----------------------------|--------------------------|-----------------|-----------------|
|         | Nagpur | 287             | IOE North Ambazari road     | Residential              | 21°08'10.0"N    | 79° 04' 08.5" E |
|         | Nagpur | 288             | MIDC Office, Hingna Road    | Industrial               | 21°06'35.5"N    | 79°00'27.2"E    |
| Nagpur  | Nagpur | 314             | Govt Polytechnic Col, Sadar | Rural and other<br>areas | 21° 09' 47.6" N | 79° 04' 57.6" E |
|         | Nagpur | 711             | Civil lines Nagpur          | Residential              | 21° 09' 28.6" N | 79° 04' 12.1" E |

# Nagpur - IOE North Ambazari road

| FY     | Ν       | Monthly average (µg/n³) |                        |            |  |
|--------|---------|-------------------------|------------------------|------------|--|
| 201314 | I N     | RSPM                    | NO x                   | SO 2       |  |
| Apr    | 9       | 87                      | 25                     | 9          |  |
| May    | 9       | 84                      | 30                     | 9          |  |
| Jun    | 7       | 83                      | 26                     | 8          |  |
| Jul    | 7       | 128                     | 27                     | 10         |  |
| Aug    | 9       | 114                     | 25                     | 9          |  |
| Sep    | 9       | 103                     | 26                     | 10         |  |
| Oct    | 9       | 11                      | 29                     | 11         |  |
| Nov    | 11      | 115                     | 32                     | 11         |  |
| Dec    | 8       | 100                     | 37                     | 11         |  |
| Jan    | 9       | 81                      | 33                     | 11         |  |
| Feb    |         |                         |                        |            |  |
| Mar    |         |                         |                        |            |  |
|        | Total N | % of exceeder           | nceof daily readings f | for 201314 |  |
|        | 87      | 40.2                    | 0.0                    | 0.0        |  |

Table No. 103 Data for monthly average reading recorded at OE North Ambazari road

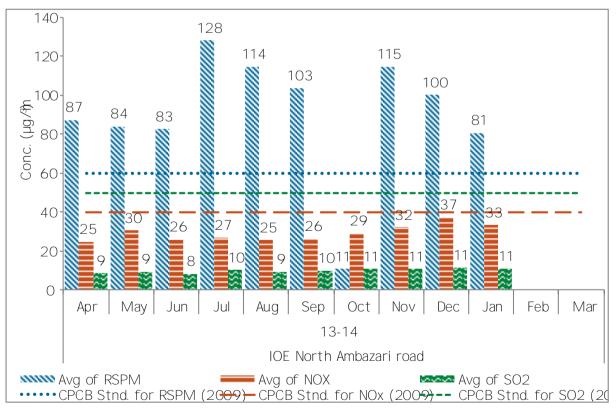



Figure No. 123 Monthly average reading recorded at IOE North Ambazari road



| Year            | Ν   | Annual average (µg∕m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            | 77  | 52                     | 21   | 8               |
| 0506            | 66  | 44                     | 30   | 9               |
| 0607            | 85  | 66                     | 27   | 10              |
| 07-08           | 95  | 125                    | 22   | 8               |
| 0809            | 99  | 114                    | 30   | 8               |
| 0910            | 107 | 109                    | 36   | 10              |
| 10-11           | 101 | 96                     | 33   | 10              |
| 11-12           | 99  | 84                     | 34   | 10              |
| 12-13           | 105 | 96                     | 39   | 11              |
| 13-14           | 87  | 90                     | 29   | 10              |

Table No. 104 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at IOE North Ambazari road

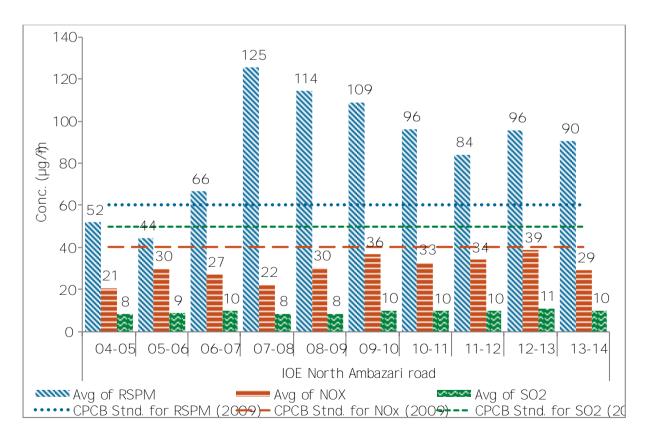



Figure No. 124 Annual average trend of SO<sub>2</sub>, NOx and RSPM at -IOE North Ambazari road



#### Nagpur - MIDC Office, Hingna Road

Table No. 105 Data for monthly average reading recorded attIDC Office, Hingna Road

| FY     | N       | Monthly average (µg/m³)                      |      |      |  |
|--------|---------|----------------------------------------------|------|------|--|
| 201314 | N       | RSPM                                         | NO x | SO 2 |  |
| Apr    | 9       | 89                                           | 29   | 9    |  |
| May    | 9       | 122                                          | 28   | 9    |  |
| Jun    | 7       | 111                                          | 32   | 10   |  |
| Jul    | 8       | 149                                          | 30   | 11   |  |
| Aug    | 10      | 148                                          | 27   | 10   |  |
| Sep    | 9       | 129                                          | 29   | 10   |  |
| Oct    | 9       | 149                                          | 29   | 11   |  |
| Nov    | 9       | 107                                          | 37   | 11   |  |
| Dec    | 9       | 103                                          | 38   | 12   |  |
| Jan    | 8       | 75                                           | 34   | 11   |  |
| Feb    |         |                                              |      |      |  |
| Mar    |         |                                              |      |      |  |
|        | Total N | % of exceedence of daily readings for 201314 |      |      |  |
|        | 87      | 64.4                                         | 0.0  | 0.0  |  |

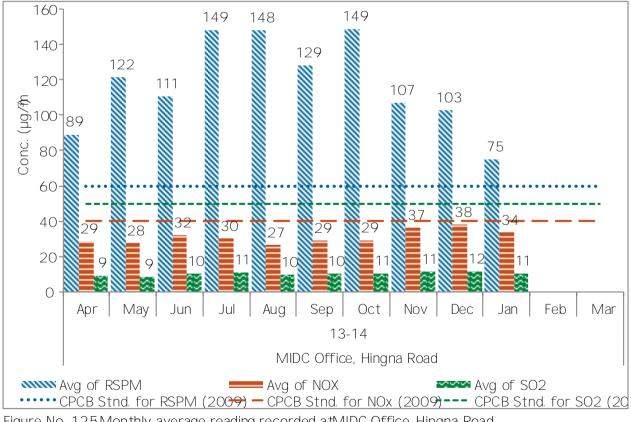



Figure No. 125 Monthly average reading recorded atMIDC Office, Hingna Road



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 04-05           | 75  | 51                     | 22   | 9               |
| 0506            | 81  | 40                     | 34   | 10              |
| 0607            | 78  | 90                     | 25   | 9               |
| 07-08           | 92  | 160                    | 24   | 9               |
| 0809            | 96  | 118                    | 30   | 9               |
| 0910            | 104 | 128                    | 38   | 10              |
| 10-11           | 95  | 113                    | 34   | 10              |
| 11-12           | 99  | 105                    | 35   | 10              |
| 12-13           | 100 | 125                    | 41   | 11              |
| 13-14           | 87  | 119                    | 31   | 10              |

Table No. 106 Data for annual average trend of RSPM, NQ and SO\_2 at MIDC Office, Hingna Road

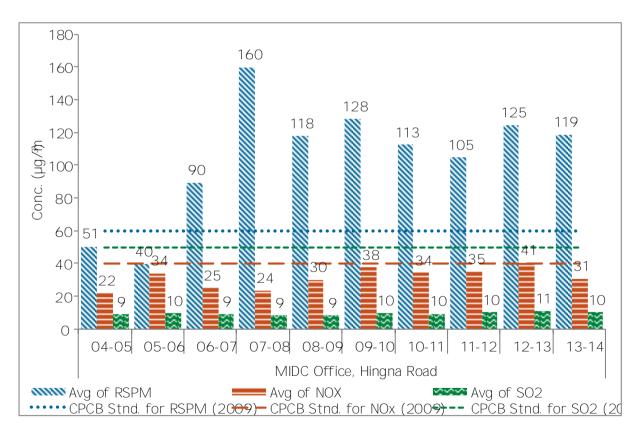



Figure No. 126Annual average trend of SQ, NOx and RSPM at -MIDC Office, Hingna Road



#### Nagpur - Govt Polytechnic Col, Sadar

Table No. 107. Data for monthly average reading recorded abovt Polytechnic Col, Sadar

| FY     | Ν       | Monthly average (µg/m³)                      |      |                 |
|--------|---------|----------------------------------------------|------|-----------------|
| 201314 | - N -   | RSPM                                         | NO x | SO <sub>2</sub> |
| Apr    | 10      | 84                                           | 24   | 9               |
| May    | 9       | 88                                           | 29   | 9               |
| Jun    | 6       | 65                                           | 25   | 8               |
| Jul    | 9       | 130                                          | 28   | 10              |
| Aug    | 8       | 100                                          | 26   | 9               |
| Sep    | 9       | 81                                           | 22   | 8               |
| Oct    | 8       | 99                                           | 25   | 9               |
| Nov    | 11      | 103                                          | 33   | 10              |
| Dec    | 9       | 90                                           | 37   | 11              |
| Jan    | 9       | 67                                           | 29   | 10              |
| Feb    |         |                                              |      |                 |
| Mar    |         |                                              |      |                 |
|        | Total N | % of exceedence of daily readings for 201314 |      |                 |
|        | 88      | 307                                          | 0.0  | 0.0             |

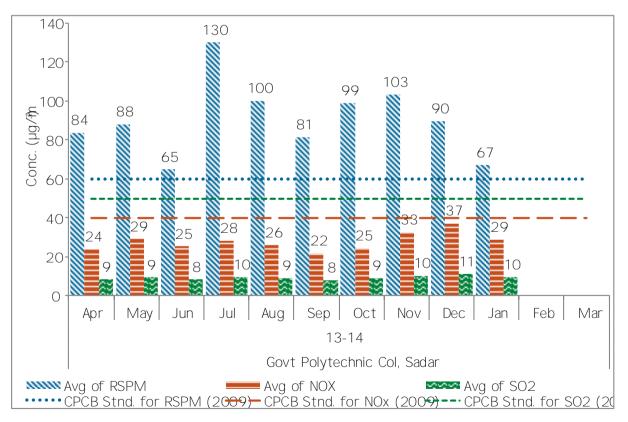



Figure No. 127 Monthly average reading recorded atGovt Polytechnic Col, Sadar





| Year            | Ν   | Annual average (µg∕m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            | 75  | 45                     | 21   | 9    |
| 0506            | 76  | 52                     | 32   | 9    |
| 0607            | 84  | 70                     | 26   | 9    |
| 07-08           | 93  | 107                    | 21   | 8    |
| 0809            | 81  | 101                    | 27   | 8    |
| 0910            | 102 | 93                     | 31   | 9    |
| 10-11           | 102 | 87                     | 30   | 9    |
| 11-12           | 113 | 80                     | 30   | 9    |
| 12-13           | 103 | 82                     | 35   | 10   |
| 13-14           | 88  | 92                     | 28   | 9    |

Table No. 108 Data for annual average trend of RSPM, NQ and SO\_2 atGovt Polytechnic Col, Sadar

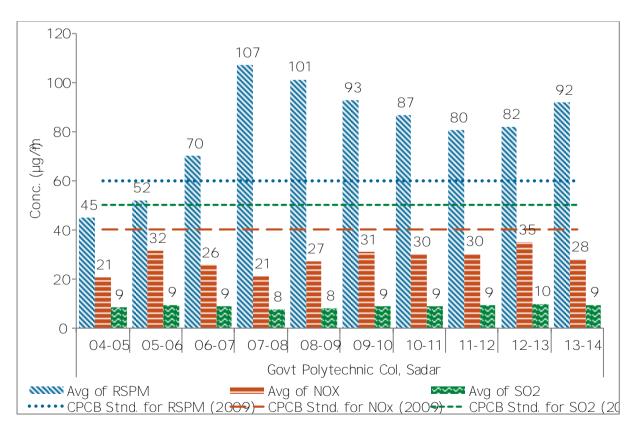



Figure No. 128 Annual average trend of SO<sub>2</sub>, NOx and RSPM at -Govt Polytechnic Col, Sadar



# Nagpur - Civil lines Nagpur

| FY     | Ν       | Mor                                          | nthly average (µg/m) |      |
|--------|---------|----------------------------------------------|----------------------|------|
| 201314 | IN      | RSPM                                         | NO x                 | SO 2 |
| Apr    | 24      | 60                                           | 25                   | 9    |
| May    | 25      | 55                                           | 21                   | 8    |
| Jun    | 21      | 52                                           | 21                   | 8    |
| Jul    | 23      | 56                                           | 21                   | 8    |
| Aug    | 26      | 56                                           | 22                   | 9    |
| Sep    | 24      | 57                                           | 22                   | 9    |
| Oct    | 25      | 64                                           | 22                   | 9    |
| Nov    | 25      | 76                                           | 30                   | 11   |
| Dec    | 27      | 59                                           | 29                   | 10   |
| Jan    | 24      | 63                                           | 27                   | 10   |
| Feb    | 22      | 66                                           | 27                   | 10   |
| Mar    | 23      | 64                                           | 27                   | 10   |
|        | Total N | % of exceedence of daily readings for 201314 |                      |      |
|        | 289     | 2.1                                          | 0.0                  | 0.0  |

Table No. 109 Data for monthly average reading recorded tCivil lines Nagpur

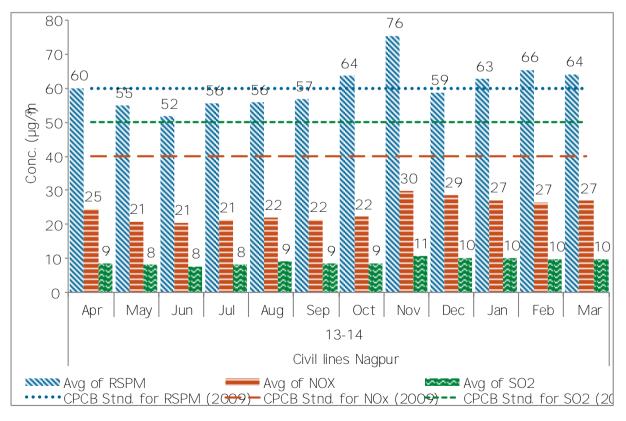



Figure No. 129 Monthly average reading recorded atCivil lines Nagpur



| Year            | Ν   | Annual average (µg∕m³) |      |                 |  |
|-----------------|-----|------------------------|------|-----------------|--|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |  |
| Annual Standard |     | 60                     | 40   | 50              |  |
| 0405            | 200 | 53                     | 25   | 17              |  |
| 0506            | 313 | 66                     | 22   | 15              |  |
| 0607            | 277 | 76                     | 28   | 14              |  |
| 07-08           | 286 | 70                     | 30   | 14              |  |
| 0809            | 280 | 84                     | 31   | 18              |  |
| 0910            | 269 | 85                     | 35   | 13              |  |
| 10-11           | 273 | 66                     | 28   | 9               |  |
| 11-12           | 243 | 55                     | 26   | 9               |  |
| 12-13           | 258 | 54                     | 30   | 9               |  |
| 13-14           | 289 | 61                     | 24   | 9               |  |

Table No. 110 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> atCivil lines Nagpur

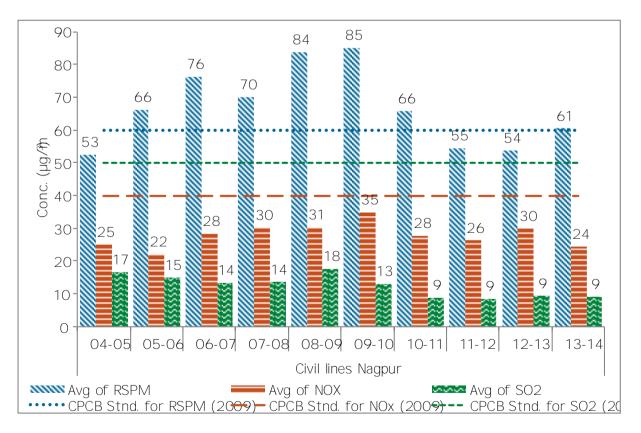



Figure No. 130Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Civil lines



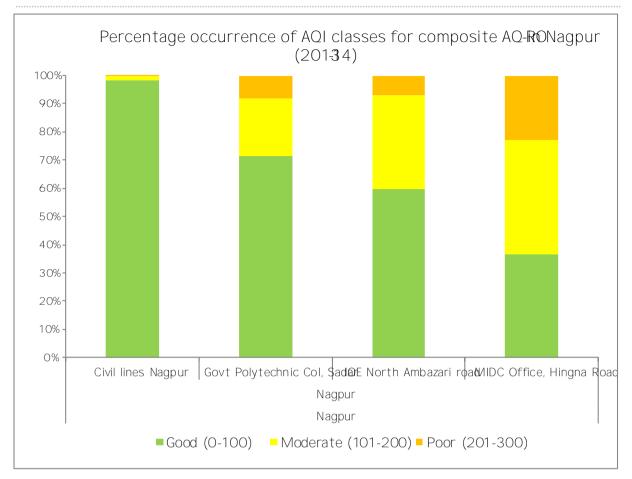
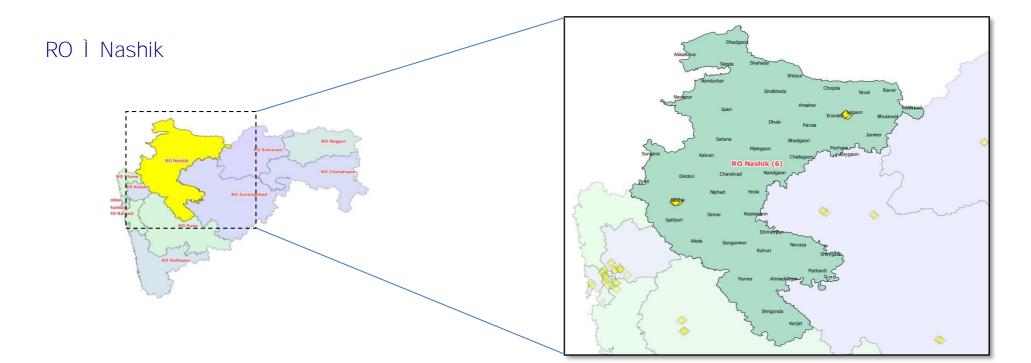




Figure No. 131: Percentage occurence of AQI classes for composite AQ in NagpurRO (201314)







| MPCB RO | Region  | Station<br>code | Station name      | Туре        | Latitude (deg)  | Longitude (deg) |
|---------|---------|-----------------|-------------------|-------------|-----------------|-----------------|
|         | Jalgaon | 644             | Old B. J. Market  | Residential | 21° 00' 37.2" N | 75° 34' 01.4" E |
|         | Jalgaon | 645             | Girna Water Tank  | Residential | 20° 59' 49.3" N | 75° 33' 04.7" E |
|         | Jalgaon | 646             | MIDC Jalgaon      | Industrial  | 20° 59' 20.2" N | 75° 35' 04.1" E |
| Nashik  | Nashik  | 259             | RTO Colony        | Residential | 19° 59' 48.9" N | 73° 46' 35.3" E |
|         | Nashik  | 269             | MIDC Satpur-VIP   | Industrial  | 19° 5954.2" N   | 73° 43' 41.2" E |
|         | Nashik  | 280             | NMC Nashik        | Residential | 20° 00' 00.0" N | 73° 46' 36.2" E |
|         | Nashik  | 710             | SRO Office Nashik | Residential | 19° 59' 32.9" N | 73° 45' 01.1" E |

### Jalgaon-Old B. J. Market

| FY     | Ν       | Monthly average (µg/m)                       |      |      |
|--------|---------|----------------------------------------------|------|------|
| 201314 | IN      | RSPM                                         | NO x | SO 2 |
| Apr    | 10      | 163                                          | 52   | 22   |
| May    | 8       | 142                                          | 55   | 18   |
| Jun    | 6       | 97                                           | 32   | 14   |
| Jul    | 8       | 98                                           | 31   | 14   |
| Aug    |         |                                              |      |      |
| Sep    | 8       | 106                                          | 35   | 16   |
| Oct    | 16      | 119                                          | 38   | 19   |
| Nov    | 8       | 114                                          | 38   | 19   |
| Dec    | 9       | 110                                          | 38   | 19   |
| Jan    | 8       | 106                                          | 40   | 20   |
| Feb    | 7       | 109                                          | 42   | 22   |
| Mar    | 9       | 122                                          | 43   | 23   |
|        | Total N | % of exceedence of daily readings for 201314 |      |      |
|        | 97      | 83.5                                         | 0.0  | 0.0  |

Table No. 111: Data for monthly average reading recorded a Old B. J. Market

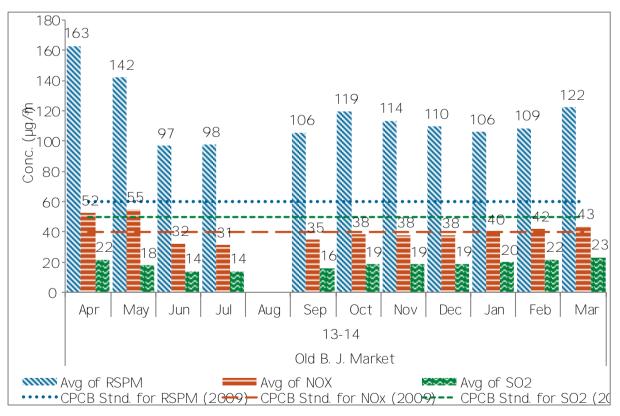



Figure No. 132 Monthly average reading recorded atOld B. J. Market



| Year            | Ν   | Annual average (µg∕m³) |      |      |  |
|-----------------|-----|------------------------|------|------|--|
|                 |     | RSPM                   | NO x | SO 2 |  |
| Annual Standard |     | 60                     | 40   | 50   |  |
| 0405            |     |                        |      |      |  |
| 0506            |     |                        |      |      |  |
| 0607            |     |                        |      |      |  |
| 07-08           |     |                        |      |      |  |
| 0809            | 31  | 117                    | 48   | 14   |  |
| 0910            | 104 | 109                    | 45   | 15   |  |
| 10-11           | 95  | 122                    | 45   | 18   |  |
| 11-12           | 96  | 111                    | 43   | 16   |  |
| 12-13           | 100 | 123                    | 44   | 18   |  |
| 13-14           | 97  | 118                    | 41   | 19   |  |

Table No. 112 Data for annual average trend of RSPM, NQ and SO\_2 atOld B. J. Market

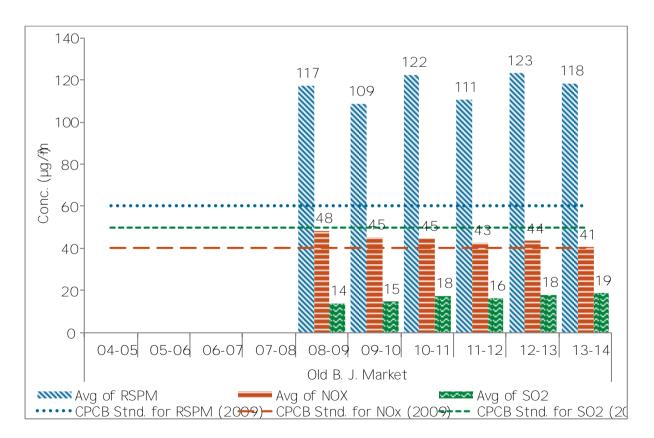



Figure No. 133Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Old B. J. Market



# Jalgaon-Girna Water Tank

Table No. 113 Data for monthly average reading recorded alirna Water Tank

| FY     | Ν       | Mor                                          | nthly average (µg/m) |      |
|--------|---------|----------------------------------------------|----------------------|------|
| 201314 | IN      | RSPM                                         | NO x                 | SO 2 |
| Apr    | 8       | 157                                          | 48                   | 18   |
| May    | 8       | 147                                          | 44                   | 17   |
| Jun    | 6       | 105                                          | 31                   | 13   |
| Jul    | 7       | 102                                          | 30                   | 12   |
| Aug    | 8       | 98                                           | 31                   | 13   |
| Sep    | 7       | 106                                          | 34                   | 15   |
| Oct    | 9       | 108                                          | 35                   | 16   |
| Nov    | 10      | 114                                          | 36                   | 18   |
| Dec    | 8       | 108                                          | 37                   | 17   |
| Jan    | 9       | 108                                          | 38                   | 18   |
| Feb    | 7       | 115                                          | 40                   | 21   |
| Mar    | 9       | 117                                          | 40                   | 21   |
|        | Total N | % of exceedence of daily readings for 201314 |                      |      |
|        | 96      | 81.3                                         | 0.0                  | 0.0  |

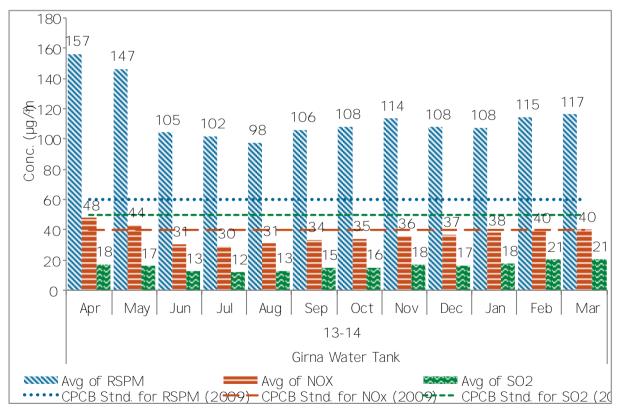



Figure No. 134 Monthly average reading recorded atGirna Water Tank



| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            |     |                        |      |      |
| 0607            |     |                        |      |      |
| 07-08           |     |                        |      |      |
| 0809            | 36  | 102                    | 40   | 11   |
| 0910            | 104 | 110                    | 43   | 13   |
| 10-11           | 103 | 122                    | 42   | 16   |
| 11-12           | 94  | 116                    | 38   | 13   |
| 12-13           | 100 | 124                    | 40   | 16   |
| 13-14           | 96  | 116                    | 37   | 17   |

Table No. 114: Data for annual average trend of RSPM, NQand SO<sub>2</sub>atGirna Water Tank

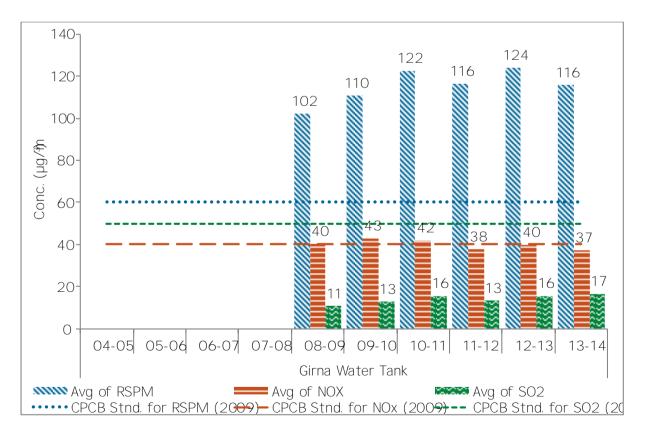



Figure No. 135 Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Girna Water Tank





#### Jalgaon - MIDC Jalgaon

| FY     | NI      | Mor                                          | nthly average (µg/m) |                 |
|--------|---------|----------------------------------------------|----------------------|-----------------|
| 201314 | N –     | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr    | 8       | 175                                          | 59                   | 30              |
| May    | 10      | 164                                          | 56                   | 27              |
| Jun    | 5       | 116                                          | 36                   | 16              |
| Jul    | 6       | 119                                          | 35                   | 15              |
| Aug    | 6       | 128                                          | 36                   | 16              |
| Sep    | 8       | 135                                          | 41                   | 20              |
| Oct    | 10      | 134                                          | 42                   | 21              |
| Nov    | 8       | 128                                          | 43                   | 23              |
| Dec    | 8       | 121                                          | 44                   | 24              |
| Jan    | 10      | 112                                          | 44                   | 24              |
| Feb    | 8       | 118                                          | 47                   | 24              |
| Mar    | 8       | 124                                          | 48                   | 25              |
|        | Total N | % of exceedence of daily readings for 201314 |                      |                 |
|        | 95      | 94.7                                         | 0.0                  | 0.0             |

Table No. 115 Data for monthly average reading recorded at/IDC Jalgaon

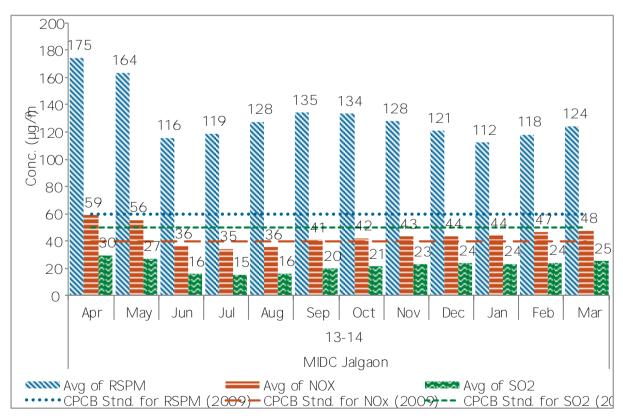



Figure No. 136 Monthly average reading recorded at MIDC Jalgaon



| Year            | Ν   | Ann  | ual average (µg/m | 3)              |
|-----------------|-----|------|-------------------|-----------------|
|                 |     | RSPM | NO x              | SO <sub>2</sub> |
| Annual Standard |     | 60   | 40                | 50              |
| 0405            |     |      |                   |                 |
| 0506            |     |      |                   |                 |
| 0607            |     |      |                   |                 |
| 07-08           |     |      |                   |                 |
| 0809            | 24  | 120  | 54                | 15              |
| 0910            | 97  | 120  | 49                | 16              |
| 10-11           | 105 | 142  | 51                | 22              |
| 11-12           | 92  | 137  | 49                | 22              |
| 12-13           | 101 | 150  | 51                | 24              |
| 13-14           | 95  | 132  | 45                | 23              |

Table No. 116 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at MIDC Jalgaon

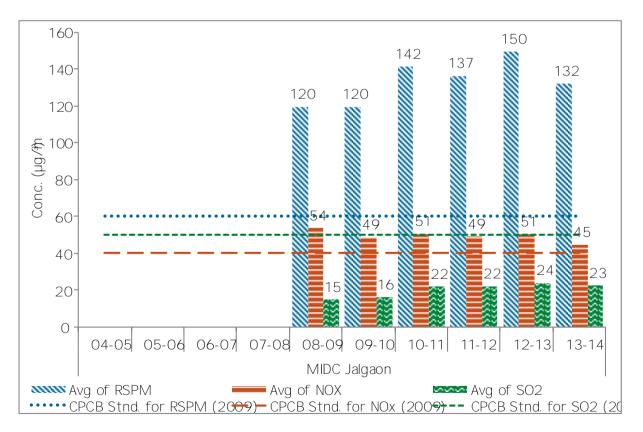



Figure No. 137. Annual average trend of SO<sub>2</sub>, NOx and RSPM at-MIDC Jalgaon



#### Nashik - RTO Colon y

| FY     | Ν       | Mor           | nthly average (µg/m)   |                 |
|--------|---------|---------------|------------------------|-----------------|
| 201314 | IN      | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr    | 9       | 93            | 31                     | 30              |
| May    | 9       | 98            | 29                     | 28              |
| Jun    | 8       | 76            | 30                     | 31              |
| Jul    | 9       | 74            | 28                     | 29              |
| Aug    | 9       | 42            | 27                     | 25              |
| Sep    | 8       | 39            | 26                     | 26              |
| Oct    | 9       | 83            | 27                     | 26              |
| Nov    | 9       | 84            | 29                     | 31              |
| Dec    | 9       | 60            | 26                     | 25              |
| Jan    | 9       | 53            | 27                     | 25              |
| Feb    | 8       | 76            | 27                     | 27              |
| Mar    |         |               |                        |                 |
|        | Total N | % of exceeder | nceof daily readings f | for 201314      |
|        | 96      | 17.7          | 0.0                    | 0.0             |

Table No. 117: Data for monthly average reading recorded atto Colony

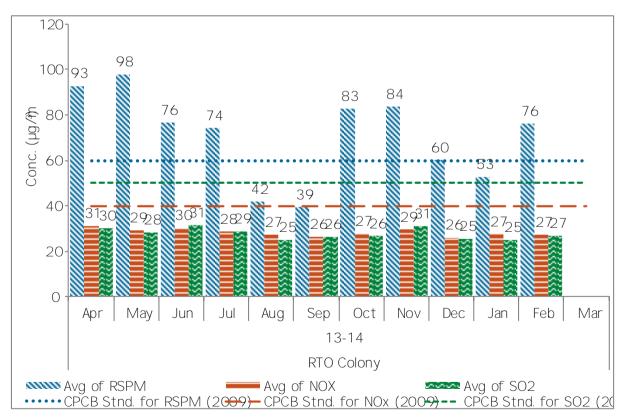



Figure No. 138 Monthly average reading recorded at RTO Colony



| Year            | Ν   | Ann  | Annual average (µg/m³) |                 |  |
|-----------------|-----|------|------------------------|-----------------|--|
|                 |     | RSPM | NO x                   | SO <sub>2</sub> |  |
| Annual Standard |     | 60   | 40                     | 50              |  |
| 0405            | 25  | 79   | 25                     | 33              |  |
| 0506            | 69  | 92   | 25                     | 29              |  |
| 0607            | 86  | 51   | 26                     | 32              |  |
| 07-08           | 94  | 42   | 27                     | 34              |  |
| 0809            | 104 | 88   | 25                     | 26              |  |
| 0910            | 94  | 81   | 29                     | 21              |  |
| 10-11           | 104 | 75   | 23                     | 21              |  |
| 11-12           | 105 | 98   | 28                     | 24              |  |
| 12-13           | 113 | 90   | 27                     | 25              |  |
| 13-14           | 96  | 71   | 28                     | 28              |  |

Table No. 118 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at RTO Colony

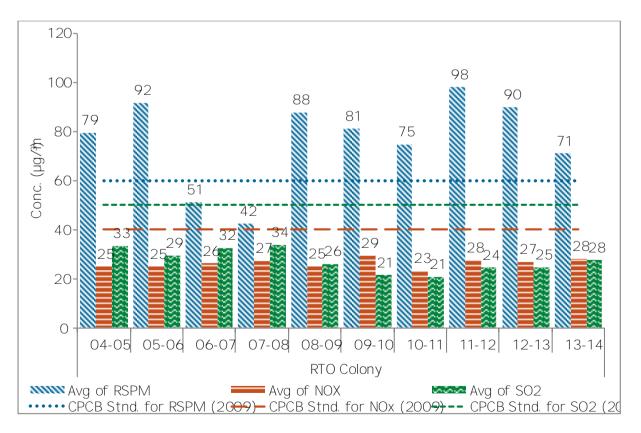



Figure No. 139 Annual average trend of SO<sub>2</sub>, NOx and RSPM at-RTO Colony





#### Nashik - MIDC Satpur - VIP

| FY     | Ν       | Mor                                          | nthly average (µg/m) |                 |
|--------|---------|----------------------------------------------|----------------------|-----------------|
| 201314 | IN      | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr    | 8       | 96                                           | 31                   | 30              |
| May    | 9       | 99                                           | 29                   | 27              |
| Jun    | 9       | 83                                           | 32                   | 29              |
| Jul    | 9       | 74                                           | 28                   | 27              |
| Aug    | 9       | 48                                           | 26                   | 27              |
| Sep    | 8       | 47                                           | 26                   | 27              |
| Oct    | 9       | 65                                           | 29                   | 28              |
| Nov    | 9       | 84                                           | 31                   | 27              |
| Dec    | 8       | 55                                           | 26                   | 25              |
| Jan    | 9       | 51                                           | 26                   | 26              |
| Feb    | 8       | 83                                           | 24                   | 26              |
| Mar    |         |                                              |                      |                 |
|        | Total N | % of exceedence of daily readings for 201314 |                      |                 |
|        | 95      | 20.0                                         | 0.0                  | 0.0             |

Table No. 119. Data for monthly average reading recorded attIDC Satpur - VIP

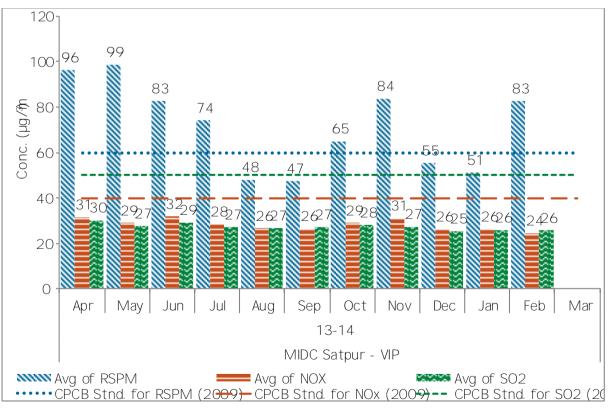



Figure No. 140Monthly average reading recorded atMID C Satpur-VIP



| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            | 25  | 90                     | 27   | 36   |
| 0506            | 68  | 98                     | 28   | 33   |
| 0607            | 101 | 58                     | 28   | 34   |
| 07-08           | 101 | 52                     | 34   | 41   |
| 0809            | 104 | 91                     | 27   | 30   |
| 0910            | 104 | 85                     | 29   | 23   |
| 10-11           | 103 | 70                     | 25   | 23   |
| 11-12           | 105 | 98                     | 28   | 25   |
| 12-13           | 102 | 92                     | 27   | 25   |
| 13-14           | 95  | 71                     | 28   | 27   |

Table No. 120 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> at MIDC Satpur - VIP

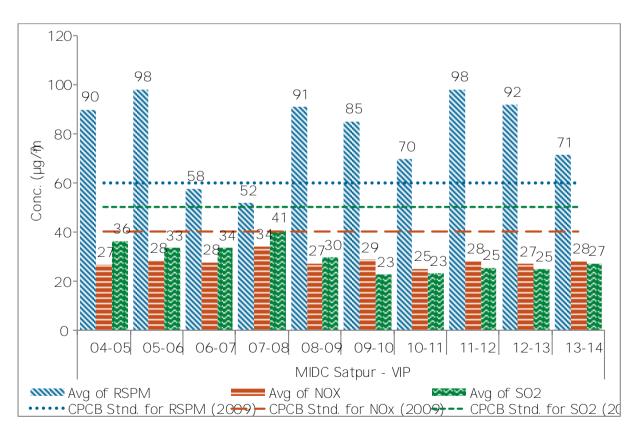



Figure No. 141: Annual average trend of SO<sub>2</sub>, NOx and RSPM atMIDC Satpur -VIP





#### Nashik Ì NMC Nashik

| FY     | Ν       | Mor           | nthly average (µg/m)   |                 |
|--------|---------|---------------|------------------------|-----------------|
| 201314 | IN      | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr    | 9       | 90            | 31                     | 30              |
| May    | 9       | 89            | 31                     | 28              |
| Jun    | 8       | 78            | 29                     | 31              |
| Jul    | 9       | 68            | 28                     | 28              |
| Aug    | 8       | 57            | 27                     | 26              |
| Sep    | 9       | 44            | 27                     | 27              |
| Oct    | 9       | 75            | 28                     | 27              |
| Nov    | 8       | 95            | 32                     | 30              |
| Dec    | 9       | 56            | 26                     | 24              |
| Jan    | 9       | 55            | 28                     | 26              |
| Feb    | 8       | 70            | 26                     | 25              |
| Mar    |         |               |                        |                 |
|        | Total N | % of exceeder | nceof daily readings f | for 201314      |
|        | 95      | 7.4           | 0.0                    | 0.0             |

Table No. 121: Data for monthly average reading recorded at MC Nashik

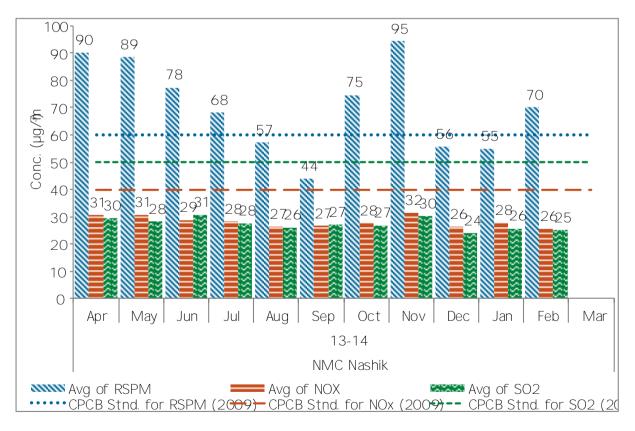



Figure No. 142 Monthly average reading recorded at NMC Nashik



| Year            | Ν  | Anr  | nual average (µg/m | 3)   |
|-----------------|----|------|--------------------|------|
|                 |    | RSPM | NO x               | SO 2 |
| Annual Standard |    | 60   | 40                 | 50   |
| 0405            |    |      |                    |      |
| 0506            |    |      |                    |      |
| 0607            |    |      |                    |      |
| 07-08           |    |      |                    |      |
| 0809            |    |      |                    |      |
| 0910            |    |      |                    |      |
| 10-11           |    |      |                    |      |
| 11-12           |    |      |                    |      |
| 12-13           |    |      |                    |      |
| 13-14           | 95 | 70   | 28                 | 28   |

Table No. 122 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atNMC Nashik

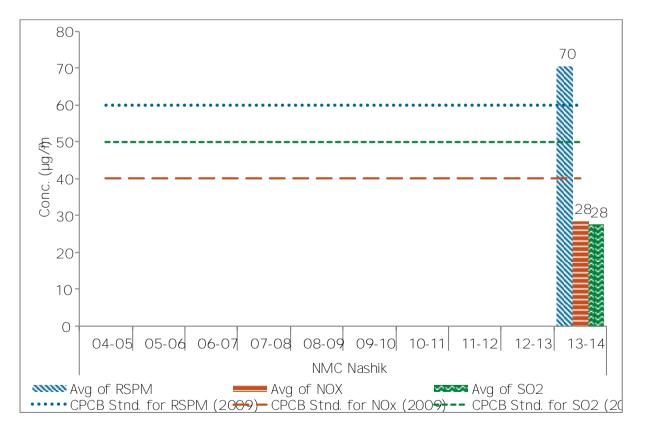



Figure No. 143Annual average trend of SO<sub>2</sub> NOx and RSPM at-NMC Nashik



#### Nashik - SRO Office Nashik

| FY     | Ν       | Mor           | nthly average (µg/m)   |                 |
|--------|---------|---------------|------------------------|-----------------|
| 201314 |         | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr    | 26      | 101           | 31                     | 30              |
| May    | 11      | 116           | 29                     | 28              |
| Jun    | 25      | 84            | 31                     | 32              |
| Jul    | 17      | 54            | 31                     | 27              |
| Aug    | 26      | 60            | 27                     | 27              |
| Sep    |         |               |                        |                 |
| Oct    | 27      | 63            | 28                     | 27              |
| Nov    | 26      | 80            | 30                     | 30              |
| Dec    | 26      | 62            | 26                     | 25              |
| Jan    | 27      | 98            | 25                     | 25              |
| Feb    | 24      | 80            | 25                     | 25              |
| Mar    |         |               |                        |                 |
|        | Total N | % of exceeder | nceof daily readings t | for 201314      |
| 235    |         | 24.7          | 0.0                    | 0.0             |

Table No. 123 Data for monthly average reading recorded a\$RO Office Nashik

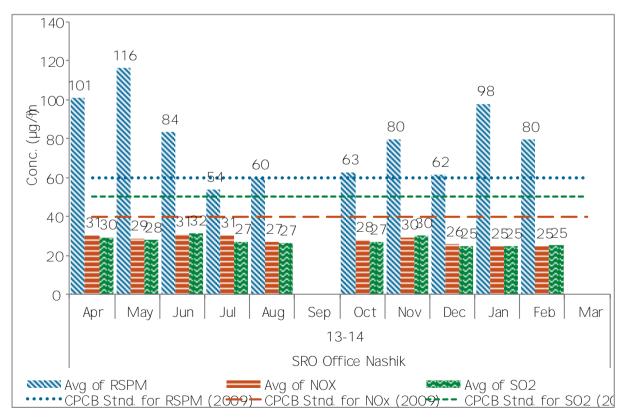



Figure No. 144 Monthly average reading recorded atSRO Office Nashik





| Year            | Ν   | Annı | ual average (µg/m | 3)   |
|-----------------|-----|------|-------------------|------|
|                 |     | RSPM | NO x              | SO 2 |
| Annual Standard |     | 60   | 40                | 50   |
| 0405            | 167 | 69   | 31                | 19   |
| 0506            | 319 | 78   | 27                | 14   |
| 0607            | 276 | 102  | 27                | 16   |
| 07-08           | 290 | 114  | 26                | 17   |
| 0809            | 253 | 104  | 29                | 23   |
| 0910            | 297 | 86   | 27                | 21   |
| 10-11           | 294 | 85   | 23                | 20   |
| 11-12           | 232 | 114  | 28                | 24   |
| 12-13           | 309 | 90   | 27                | 24   |
| 13-14           | 235 | 78   | 28                | 28   |

Table No. 124 Data for annual average trend of RSPM, NQand SO<sub>2</sub>at-SRO Office Nashik

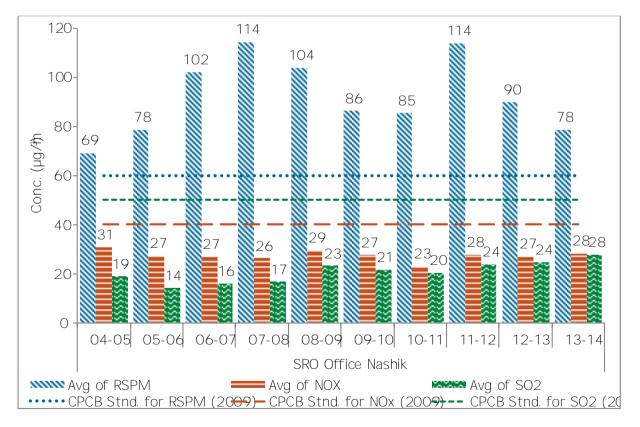



Figure No. 145Annual average trend of SO<sub>2</sub>, NOx and RSPM at-SRO Office Nashik



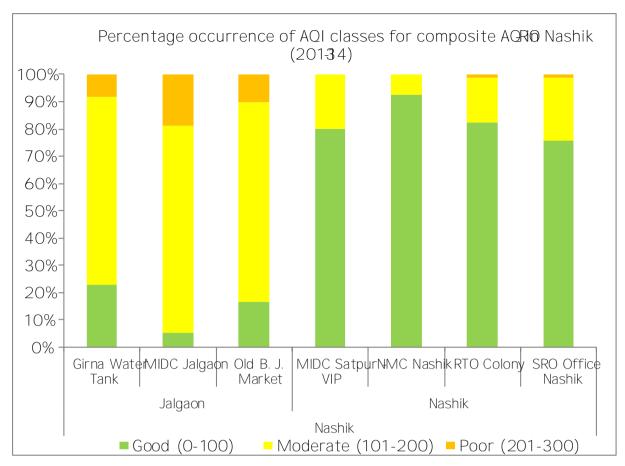
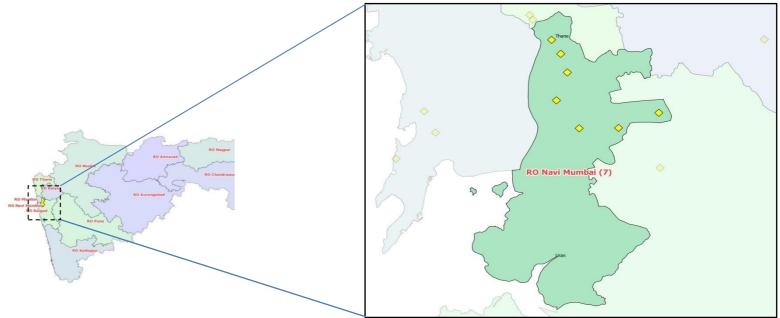




Figure No. 146 Percentage occurrence of AQI classes for composite AQ Mashik -RO (201314)





# RO Ì Navi Mumbai



| MPCB RO      | Region      | Station code | Station name                  | Туре                  | Latitude (deg)  | Longitude (deg) |
|--------------|-------------|--------------|-------------------------------|-----------------------|-----------------|-----------------|
|              | Navi Mumbai | 491          | Rabale                        | Industrial            | 19° 08' 15.2" N | 73° 00' 13.1" E |
|              | Navi Mumbai | 492          | Nerul - DY Patil              | Residential           | 19° 02' 28.1" N | 73° 01' 29.5" E |
|              | Navi Mumbai | 493          | Mahape, MPCB-Nirmal Bhavan    | Industrial            | 19° 06' 49.0" N | 73° 00' 40.1" E |
| Na vi Mumbai | Navi Mumbai |              | Airoli                        | Rural and other areas | 19° 09' 21.4" N | 72° 59' 35.4" E |
|              | Navi Mumbai |              | Vashi                         | Residential           | 19° 03' 20.4" N | 72° 55' 19.5" E |
|              | Taloja      | 494          | Kharghar - CIDCO Nodal Office | Residential           | 19° 02' 29.4" N | 73° 04' 11.8" E |
|              | Taloja      | 496          | Taloja - MIDC Building        | Indus trial           | 19° 03' 40.0" N | 73° 06' 58.6" E |

# Navi Mumbai - Rabale

| FY     | Ν       | Monthly average (µg/n³)                      |      |            |  |
|--------|---------|----------------------------------------------|------|------------|--|
| 201314 | IN      | RSPM                                         | NO x | SO 2       |  |
| Apr    | 9       | 71                                           | 53   | 20         |  |
| May    | 9       | 61                                           | 51   | 20         |  |
| Jun    | 7       | 37                                           | 28   | 12         |  |
| Jul    | 9       | 30                                           | 31   | 13         |  |
| Aug    |         |                                              |      |            |  |
| Sep    | 8       | 56                                           | 38   | 17         |  |
| Oct    | 9       | 94                                           | 51   | 19         |  |
| Nov    | 9       | 82                                           | 48   | 20         |  |
| Dec    | 9       | 84                                           | 50   | 21         |  |
| Jan    | 5       | 192                                          | 50   | 21         |  |
| Feb    |         |                                              |      |            |  |
| Mar 7  |         | 256                                          | 44   | 20         |  |
|        | Total N | % of exceedence of daily readings for 201314 |      | For 201314 |  |
| 81     |         | 23.5                                         | 0.0  | 0.0        |  |

Table No. 125 Data for monthly average reading recorded Rabale

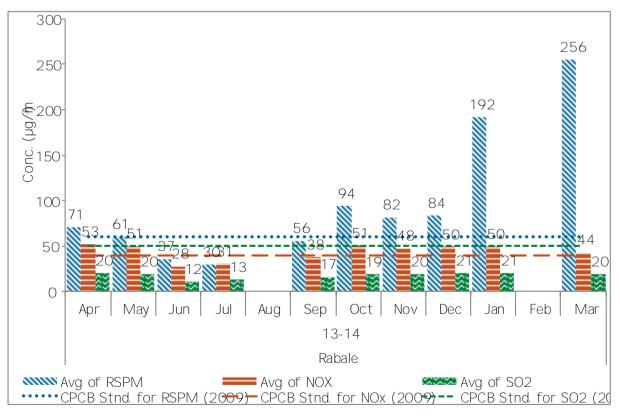



Figure No. 147 Monthly average reading recorded atRabale





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            | 65  | 106                    | 31   | 25              |
| 07-08           | 101 | 79                     | 27   | 12              |
| 0809            | 107 | 94                     | 31   | 16              |
| 0910            | 103 | 83                     | 36   | 13              |
| 10-11           | 100 | 125                    | 43   | 22              |
| 11-12           | 97  | 100                    | 47   | 18              |
| 12-13           | 103 | 71                     | 46   | 18              |
| 13-14           | 81  | 90                     | 44   | 18              |

Table No. 126 Data for annual average trend of RSPM, NQand SO2atRabale

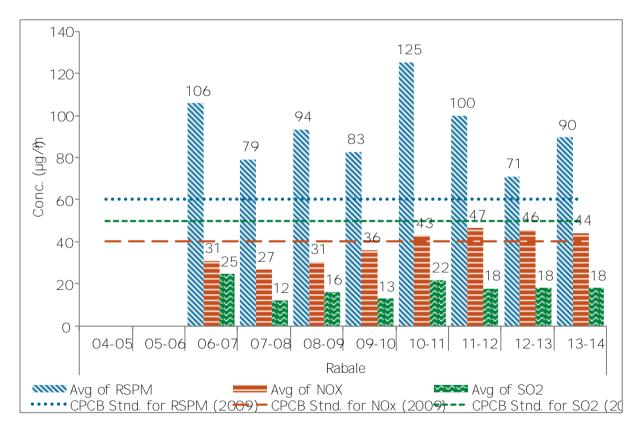



Figure No. 148Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Rabale



#### Navi Mumbai - Nerul - DY Patil

| FY     | N       | Monthly average (µg/m)                       |      |                 |
|--------|---------|----------------------------------------------|------|-----------------|
| 201314 | IN      | RSPM                                         | NO x | SO <sub>2</sub> |
| Apr    | 9       | 110                                          | 45   | 17              |
| May    | 9       | 85                                           | 44   | 17              |
| Jun    | 8       | 61                                           | 28   | 11              |
| Jul    |         |                                              |      |                 |
| Aug    |         |                                              |      |                 |
| Sep    | 9       | 52                                           | 35   | 15              |
| Oct    | 9       | 54                                           | 45   | 17              |
| Nov    | 8       | 82                                           | 43   | 17              |
| Dec    | 9       | 125                                          | 44   | 17              |
| Jan    | 9       | 196                                          | 42   | 17              |
| Feb    |         |                                              |      |                 |
| Mar    | 9       | 210                                          | 42   | 20              |
|        | Total N | % of exceedence of daily readings for 201314 |      |                 |
| 79     |         | 41.8                                         | 0.0  | 0.0             |

Table No. 127 Data for monthly average reading recorded atterul -DY Patil

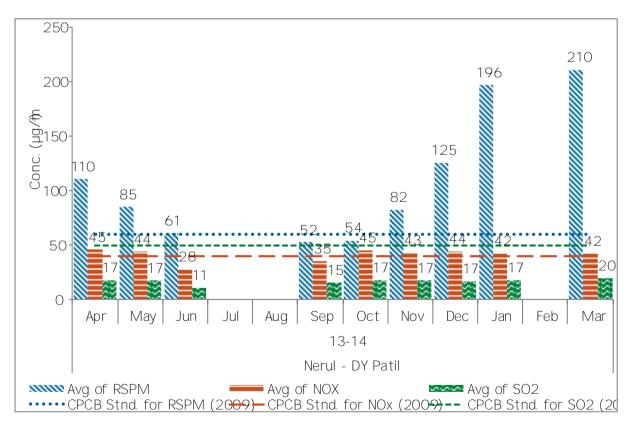



Figure No. 149 Monthly average reading recorded atNerul -DY Patil



| Year            | Ν   | Annual average (µg∕m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            |     |                        |      |      |
| 0607            | 78  | 107                    | 31   | 25   |
| 07-08           | 105 | 90                     | 33   | 17   |
| 0809            | 113 | 98                     | 40   | 20   |
| 0910            | 104 | 71                     | 37   | 10   |
| 10-11           | 96  | 119                    | 33   | 14   |
| 11-12           | 98  | 118                    | 43   | 15   |
| 12-13           | 95  | 95                     | 40   | 15   |
| 13-14           | 79  | 109                    | 41   | 17   |

Table No. 128 Data for annual average trend of RSPM, NQand SO2atNerul - DY Patil

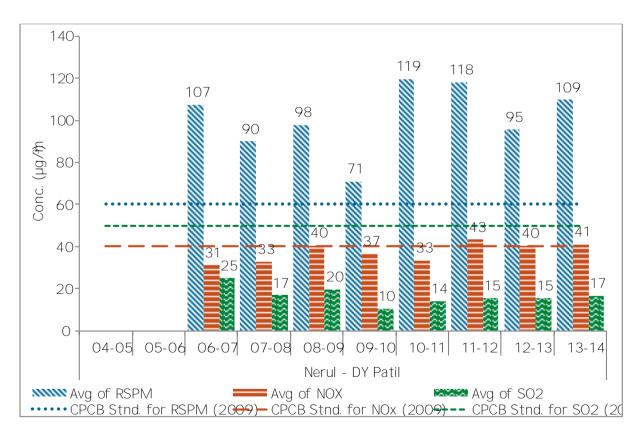



Figure No. 150Annual average trend of SO<sub>2</sub>, NOx and RSPM atNerul -DY Patil





#### Navi Mumbai - Mahape, MPCB-Nirmal Bhavan

Table No. 129 Data for monthly average reading recorded attahape, MPCB -Nirmal Bhavan

| FY     | Ν       | Monthly average (µg/m)                       |      |                 |
|--------|---------|----------------------------------------------|------|-----------------|
| 201314 | IN      | RSPM                                         | NO x | SO <sub>2</sub> |
| Apr    | 8       | 169                                          | 49   | 19              |
| May    | 9       | 138                                          | 46   | 18              |
| Jun    | 9       | 99                                           | 33   | 13              |
| Jul    |         |                                              |      |                 |
| Aug    |         |                                              |      |                 |
| Sep    | 8       | 107                                          | 38   | 16              |
| Oct    | 9       | 184                                          | 50   | 19              |
| Nov    | 9       | 179                                          | 51   | 20              |
| Dec    | 8       | 218                                          | 46   | 19              |
| Jan    | 7       | 318                                          | 50   | 20              |
| Feb    |         |                                              |      |                 |
| Mar 9  |         | 248                                          | 40   | 18              |
|        | Total N | % of exceedence of daily readings for 201314 |      |                 |
| 76     |         | 76.3                                         | 0.0  | 0.0             |

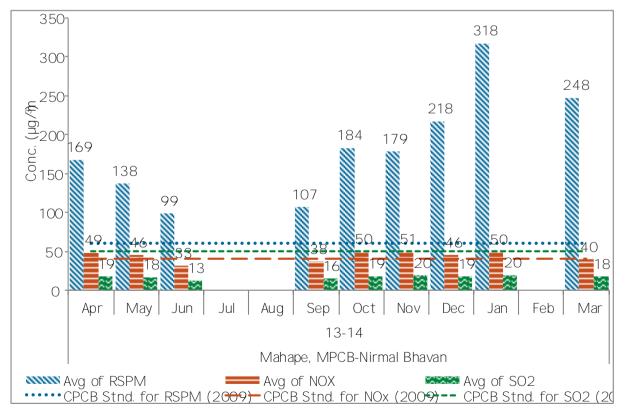



Figure No. 151: Monthly average reading recorded a Mahape, MPCB - Nirmal Bhavan





| Year            | Ν   | Annual averag e (µg/m³) |      |                 |
|-----------------|-----|-------------------------|------|-----------------|
|                 |     | RSPM                    | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                      | 40   | 50              |
| 0405            |     |                         |      |                 |
| 0506            |     |                         |      |                 |
| 0607            | 57  | 106                     | 27   | 37              |
| 07-08           | 98  | 94                      | 32   | 17              |
| 0809            | 88  | 131                     | 43   | 22              |
| 0910            | 105 | 95                      | 42   | 15              |
| 10-11           | 90  | 101                     | 41   | 22              |
| 11-12           | 69  | 133                     | 44   | 17              |
| 12-13           | 117 | 121                     | 45   | 18              |
| 13-14           | 76  | 182                     | 45   | 18              |

Table No. 130 Data for annual average trend of RSPM, NQ and SO\_2 atMahape, MPCB -Nirmal Bhavan

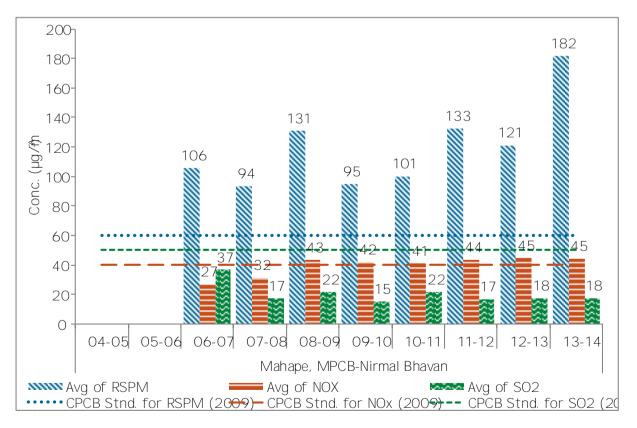



Figure No. 152Annual average trend of SO<sub>2</sub>, NOx and RSPM atMahape, MPCB -Nirmal Bhavan





#### Navi Mumbai - Airoli

| FY     | Ν       | Monthly average (µg/m³) |                       |           |
|--------|---------|-------------------------|-----------------------|-----------|
| 201314 | IN      | RSPM                    | NO x                  | SO 2      |
| Apr    | 27      | 87                      | 50                    | 16        |
| May    | 30      | 86                      | 32                    | 13        |
| Jun    | 12      | 62                      | 35                    | 12        |
| Jul    |         |                         |                       |           |
| Aug    |         |                         |                       |           |
| Sep    |         |                         |                       |           |
| Oct    | 14      | 41                      | 34                    | 25        |
| Nov    | 30      | 38                      | 54                    | 26        |
| Dec    | 30      | 35                      | 67                    | 25        |
| Jan    | 30      | 41                      | 66                    | 25        |
| Feb    | 26      | 57                      | 50                    | 23        |
| Mar 27 |         | 33                      | 68                    | 32        |
|        | Total N | % of exceeder           | nceof daily readin gs | for201314 |
| 226    |         | 3.1                     | 10.6                  | 0.0       |

Table No. 131: Data for monthly average reading recorded atiroli

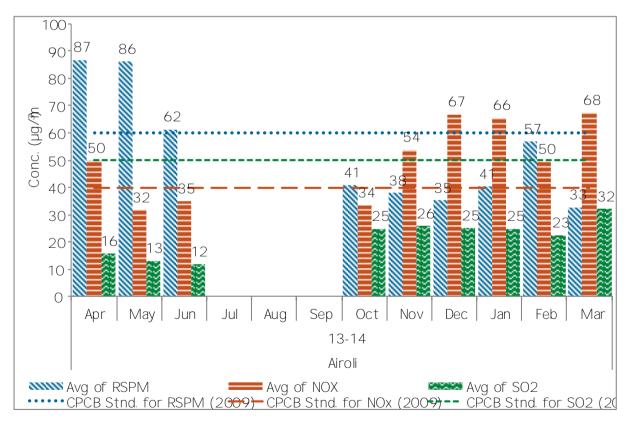



Figure No. 153 Monthly average reading recorded atAiroli







| Year            | Ν   | Annual averag e (µg∕n≆) |      |                 |
|-----------------|-----|-------------------------|------|-----------------|
|                 |     | RSPM                    | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                      | 40   | 50              |
| 0405            |     |                         |      |                 |
| 0506            |     |                         |      |                 |
| 0607            |     |                         |      |                 |
| 07-08           |     |                         |      |                 |
| 0809            | 80  | 87                      | 112  | 31              |
| 0910            | 335 | 120                     | 89   | 23              |
| 10-11           | 343 | 128                     | 67   | 27              |
| 11-12           | 250 | 181                     | 75   | 13              |
| 12-13           | 297 | 109                     | 43   | 21              |
| 13-14           | 226 | 53                      | 53   | 22              |

Table No. 132 Data for annual average trend of RSPM, NQ and SO<sub>2</sub> atAiroli

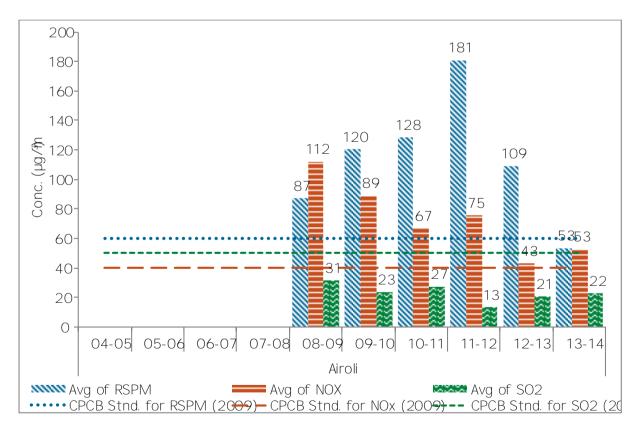



Figure No. 154 Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Airoli





#### Navi Mumbai - Vashi

| FY     | Ν                                                    | Mo   | nthly average (µg/m | )               |
|--------|------------------------------------------------------|------|---------------------|-----------------|
| 201314 | IN                                                   | RSPM | NO x                | SO <sub>2</sub> |
| Ap r   | 26                                                   | 123  | 22                  | 23              |
| May    | 27                                                   | 94   | 28                  | 25              |
| Jun    | 11                                                   | 64   | 34                  | 23              |
| Jul    |                                                      |      |                     |                 |
| Aug    | 21                                                   | 66   | 46                  | 26              |
| Sep    | 22                                                   | 75   | 54                  | 27              |
| Oct    | 31                                                   | 98   | 49                  | 37              |
| Nov    | 29                                                   | 138  | 58                  | 41              |
| Dec    | 25                                                   | 167  | 59                  | 44              |
| Jan    |                                                      |      |                     |                 |
| Feb    |                                                      |      |                     |                 |
| Mar    |                                                      |      |                     |                 |
|        | Total N % of exceedence of daily readings for 201314 |      |                     | for 201314      |
|        | 192                                                  | 51.0 | 4.2                 | 0.0             |

Table No. 133 Data for monthly average reading recorded atashi

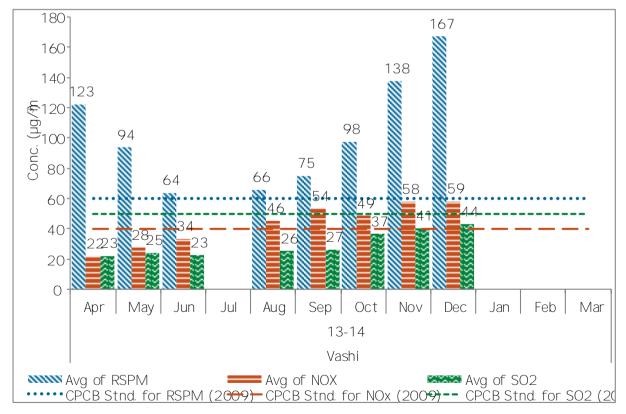



Figure No. 155 Monthly average reading recorded atVashi





| Year             | Ν   | Annual average (µg/m³) |      |                 |  |
|------------------|-----|------------------------|------|-----------------|--|
|                  |     | RSPM                   | NO x | SO <sub>2</sub> |  |
| An nual Standard |     | 60                     | 40   | 50              |  |
| 0405             |     |                        |      |                 |  |
| 0506             |     |                        |      |                 |  |
| 0607             | 137 | 101                    | 71   | 62              |  |
| 07-08            | 269 | 93                     | 50   | 50              |  |
| 0809             | 287 | 124                    | 51   | 22              |  |
| 0910             | 329 | 96                     | 57   | 26              |  |
| 10-11            | 296 | 92                     | 45   | 19              |  |
| 11-12            | 186 | 111                    | 43   | 19              |  |
| 12-13            | 250 | 110                    | 56   | 27              |  |
| 13-14            | 192 | 108                    | 44   | 31              |  |

Table No. 134 Data for annual average trend of RSPM, NQand SO2atVashi

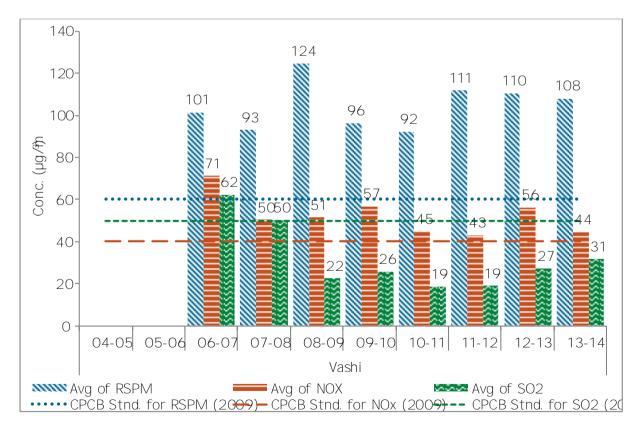



Figure No. 156Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Vashi





## Taloja - Kharghar - CIDCO Nodal Office

Table No. 135 Data for monthly average reading recorded Atharghar -CIDCO Nodal Office

| FY                                                   | N | Mor  | nthly average (µg/m) |      |
|------------------------------------------------------|---|------|----------------------|------|
| 2013-14                                              |   | RSPM | NO x                 | SO 2 |
| Apr                                                  | 9 | 87   | 46                   | 18   |
| May                                                  | 9 | 65   | 47                   | 17   |
| Jun                                                  | 8 | 52   | 27                   | 11   |
| Jul                                                  |   |      |                      |      |
| Aug                                                  |   |      |                      |      |
| Sep                                                  | 8 | 39   | 34                   | 14   |
| Oct                                                  | 9 | 77   | 45                   | 17   |
| Nov                                                  | 9 | 151  | 44                   | 18   |
| Dec                                                  | 8 | 170  | 45                   | 18   |
| Jan                                                  | 8 | 192  | 44                   | 19   |
| Feb                                                  |   |      |                      |      |
| Mar                                                  | 8 | 312  | 46                   | 18   |
| Total N% of exceedence of daily readings for 2013-14 |   |      | or 2013-14           |      |
| 76     53.9     0.0     0                            |   |      | 0.0                  |      |

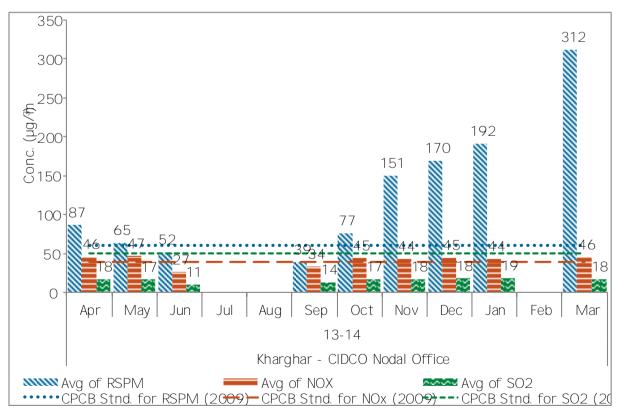



Figure No. 157. Monthly average reading recordedat Kharghar - CIDCO Nodal Office





| Year            | Ν   | Annual average (µg/m³) |      |      |
|-----------------|-----|------------------------|------|------|
|                 |     | RSPM                   | NO x | SO 2 |
| Annual Standard |     | 60                     | 40   | 50   |
| 0405            |     |                        |      |      |
| 0506            |     |                        |      |      |
| 0607            | 76  | 96                     | 33   | 18   |
| 07-08           | 94  | 108                    | 31   | 10   |
| 0809            | 94  | 115                    | 40   | 13   |
| 0910            | 111 | 75                     | 35   | 10   |
| 10-11           | 105 | 122                    | 37   | 17   |
| 11-12           | 95  | 122                    | 43   | 16   |
| 12-13           | 102 | 122                    | 41   | 16   |
| 13-14           | 76  | 125                    | 42   | 17   |

Table No. 136 Data for annual average trend of RSPM, NQ and SO\_atKharghar  $\,$  -CIDCO No  $\,$  dal Office  $\,$ 

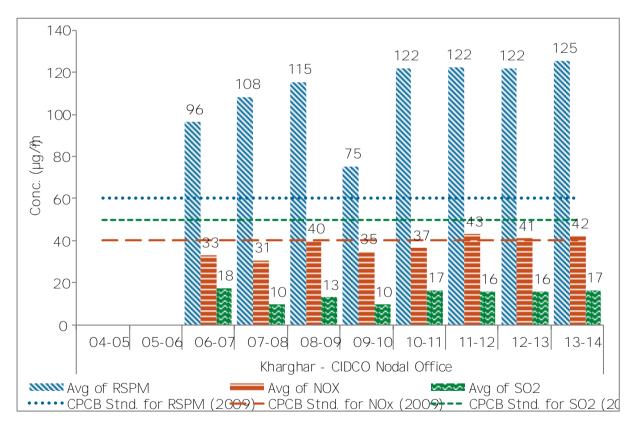



Figure No. 158Annual average trend of SO<sub>2</sub>, NOx and RSPM atKharghar -CIDCO Nodal Office





# Taloja - MIDC Building

| FY                                                  | Ν  | Mor  | nthly average (µg/m) |                 |
|-----------------------------------------------------|----|------|----------------------|-----------------|
| 201314                                              | IN | RSPM | NO x                 | SO <sub>2</sub> |
| Apr                                                 | 8  | 243  | 49                   | 19              |
| May                                                 | 10 | 164  | 49                   | 18              |
| Jun                                                 | 8  | 76   | 30                   | 13              |
| Jul                                                 |    |      |                      |                 |
| Aug                                                 |    |      |                      |                 |
| Sep                                                 | 9  | 108  | 42                   | 17              |
| Oct                                                 | 9  | 134  | 52                   | 20              |
| Nov                                                 | 8  | 245  | 50                   | 21              |
| Dec                                                 | 9  | 196  | 52                   | 21              |
| Jan                                                 | 9  | 223  | 49                   | 20              |
| Feb                                                 |    |      |                      |                 |
| Mar                                                 | 9  | 298  | 50                   | 20              |
| Total N% of exceedence of daily readings for 201314 |    |      | for 201314           |                 |
|                                                     | 79 | 78.5 | 0.0                  | 0.0             |

Table No. 137 Data for monthly average reading recorded tTaloja -MIDC Building

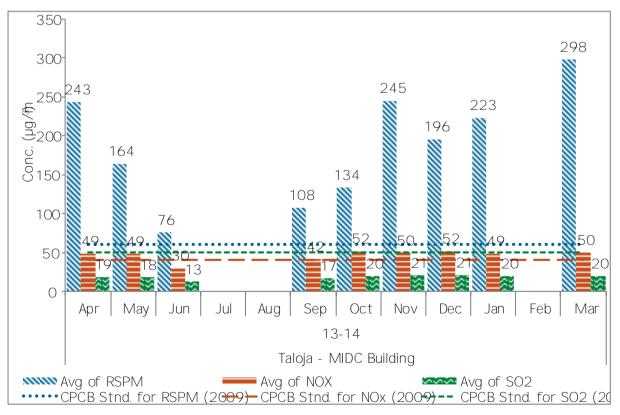



Figure No. 159 Monthly average reading recordedatTaloja -MIDC Building





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            | 65  | 101                    | 40   | 32              |
| 07-08           | 101 | 113                    | 39   | 22              |
| 0809            | 107 | 241                    | 46   | 29              |
| 0910            | 100 | 200                    | 55   | 23              |
| 10-11           | 106 | 194                    | 48   | 27              |
| 11-12           | 93  | 148                    | 51   | 20              |
| 12-13           | 104 | 129                    | 45   | 18              |
| 13-14           | 79  | 187                    | 47   | 19              |

Table No. 138 Data for annualaverage trend of RSPM, NO<sub>k</sub> and SO<sub>2</sub>atTaloja -MIDC Building

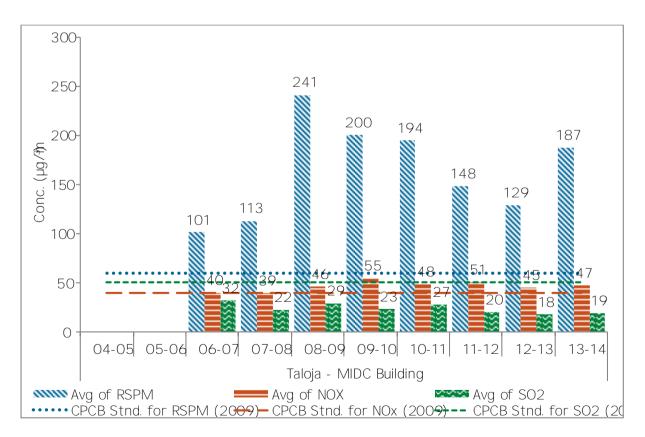



Figure No. 160Annual average trend of SO<sub>2</sub>, NOx and RSPM atTaloja -MIDC Building



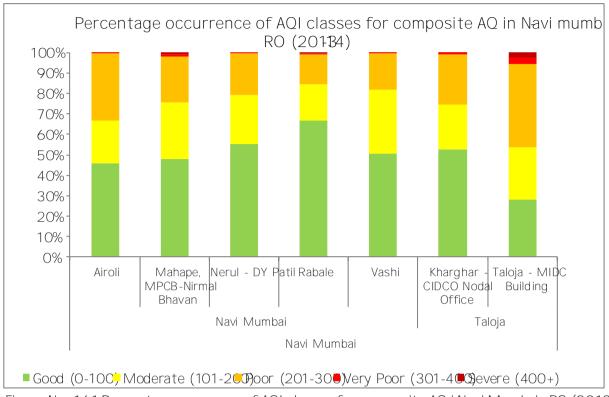
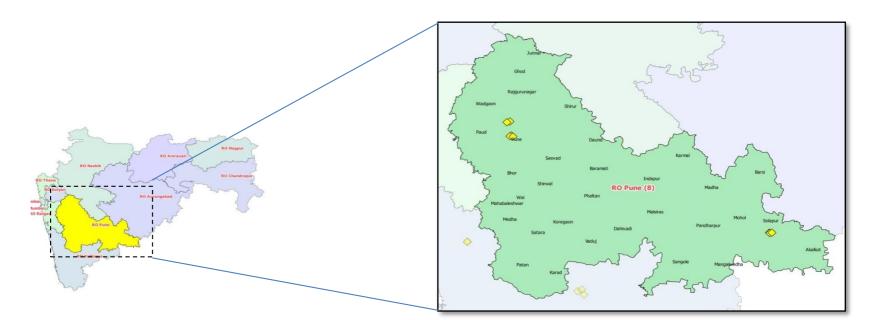




Figure No. 161: Percentage ocurrence of AQI classes for composite AQ inNavi Mumbai -RO (2013 14)





# RO Ì Pune



| MPCB RO | Region  | Station<br>code | Station name                     | Туре                  | Latitude (deg)  | Longitude (deg) |
|---------|---------|-----------------|----------------------------------|-----------------------|-----------------|-----------------|
|         | Pune    | 312             | Bhosari                          | Industrial            | 18° 38' 04.1" N | 73° 49' 42.0" E |
|         | Pune    | 379             | Nal Stop                         | Rural and other areas | 18° 30' 25.2" N | 73° 49' 39.2" E |
|         | Pune    | 381             | Swargate, Pune                   | Residential           | 18° 30' 12.6" N | 73° 51' 09.4" E |
| Dura    | Pune    | 708             | Pimpri -Chinchwad - BOB Building | Residential           | 18° 37' 41.0" N | 73°48'17.0"E    |
| Pune    | Pune    |                 | Karve Road - CAAQMS              | Residential           | 18°30'45.1" N   | 73° 50' 22.6" E |
|         | Solapur | 299             | WIT Campus                       | Residential           | 17° 40' 06.6" N | 75° 55' 19.3" E |
|         | Solapur | 300             | Saat RastaChithale Clinic        | Residential           | 17° 39' 57.6" N | 75° 54' 23.4" E |
|         | Solapur |                 | Solapur                          | Residential           | 17° 40' 07.1" N | 75° 54' 05.2" E |

# Pune - Bhosari

| FY     | Ν       | Mc                                          | nthly average (µg/m | <sup>3</sup> )  |
|--------|---------|---------------------------------------------|---------------------|-----------------|
| 201314 | IN IN   | RSPM                                        | NO x                | SO <sub>2</sub> |
| Apr    | 8       | 99                                          | 33                  | 28              |
| May    | 9       | 76                                          | 33                  | 28              |
| Jun    | 9       | 58                                          | 26                  | 19              |
| Jul    | 9       | 45                                          | 18                  | 15              |
| Aug    | 9       | 40                                          | 26                  | 17              |
| Sep    | 8       | 54                                          | 30                  | 18              |
| Oct    | 7       | 78                                          | 29                  | 21              |
| Nov    | 8       | 136                                         | 32                  | 21              |
| Dec    | 8       | 165                                         | 58                  | 26              |
| Jan    | 9       | 147                                         | 48                  | 27              |
| Feb    | 8       | 126                                         | 48                  | 31              |
| Mar    | 9       | 99                                          | 35                  | 21              |
|        | Total N | % of exceedence of daily readings for 20123 |                     | s for 201123    |
|        | 101     | 39.6                                        | 1.0                 | 0.0             |

Table No. 139 Data for monthly average reading recorded athosari

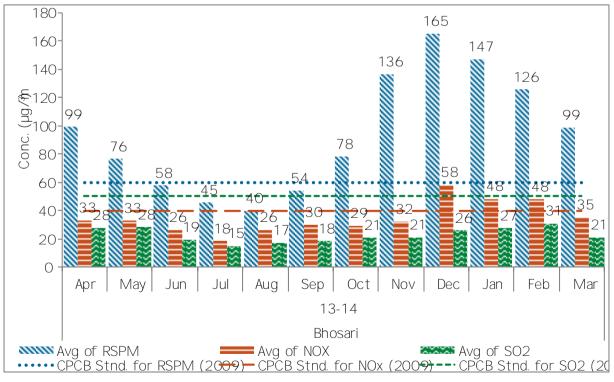


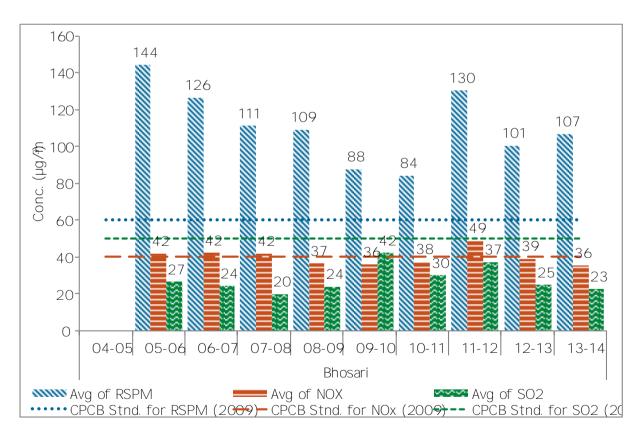

Figure No. 162 Monthly average reading recorded a Bhosari

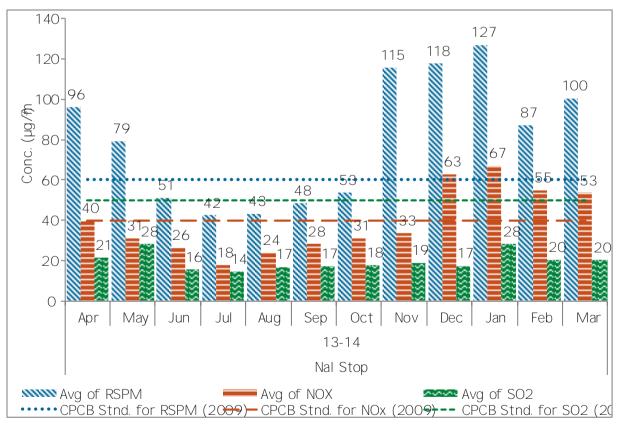




| Year            | Ν            | Annual average (µg/m³) |      |                 |
|-----------------|--------------|------------------------|------|-----------------|
|                 |              | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |              | 60                     | 40   | 50              |
| 0405            |              |                        |      |                 |
| 0506            | 40           | 144                    | 42   | 27              |
| 0607            | 99           | 126                    | 42   | 24              |
| 07-08           | 1 <i>0</i> 0 | 111                    | 42   | 20              |
| 0809            | 106          | 109                    | 37   | 24              |
| 0910            | 103          | 88                     | 36   | 42              |
| 10-11           | 97           | 84                     | 38   | 30              |
| 11-12           | 103          | 130                    | 49   | 37              |
| 12-13           | 105          | 101                    | 39   | 25              |
| 13-14           | 101          | 93                     | 35   | 23              |

Table No. 140 Data for annual average trend of RSPM, NQand SO2atBhosari





Figure No. 163Annual average trend of SO<sub>2</sub>, NOx and RSPM at Bhosari



#### Pune - Nal Stop

| FY     | Ν       | Mor                                          | nthly average (µg/m³) |                 |
|--------|---------|----------------------------------------------|-----------------------|-----------------|
| 201314 | I N     | RSPM                                         | NO x                  | SO <sub>2</sub> |
| Apr    | 9       | 96                                           | 40                    | 21              |
| May    | 9       | 79                                           | 31                    | 28              |
| Jun    | 8       | 51                                           | 26                    | 16              |
| Jul    | 9       | 42                                           | 18                    | 14              |
| Aug    | 9       | 43                                           | 24                    | 17              |
| Sep    | 8       | 48                                           | 28                    | 17              |
| Oct    | 7       | 53                                           | 31                    | 18              |
| Nov    | 11      | 115                                          | 33                    | 19              |
| Dec    | 8       | 118                                          | 63                    | 17              |
| Jan    | 10      | 127                                          | 67                    | 28              |
| Feb    | 8       | 87                                           | 55                    | 20              |
| Mar    | 8       | 100                                          | 53                    | 20              |
|        | Total N | % of exceedence of daily readings for 201314 |                       | for 201314      |
|        | 104     | 35.6                                         | 1.9                   | 0.0             |

Table No. 141: Data for monthly average reading recorded atal Stop



212



Figure No. 164 Monthly average reading recordedatNal Stop

| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            | 44  | 152                    | 43   | 27              |
| 0607            | 93  | 129                    | 42   | 23              |
| 07-08           | 101 | 108                    | 42   | 19              |
| 0809            | 107 | 91                     | 41   | 21              |
| 0910            | 102 | 82                     | 39   | 23              |
| 10-11           | 102 | 88                     | 43   | 21              |
| 11-12           | 104 | 100                    | 62   | 30              |
| 12-13           | 101 | 82                     | 45   | 19              |
| 13-14           | 104 | 82                     | 39   | 20              |

Table No. 142 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atNal Stop

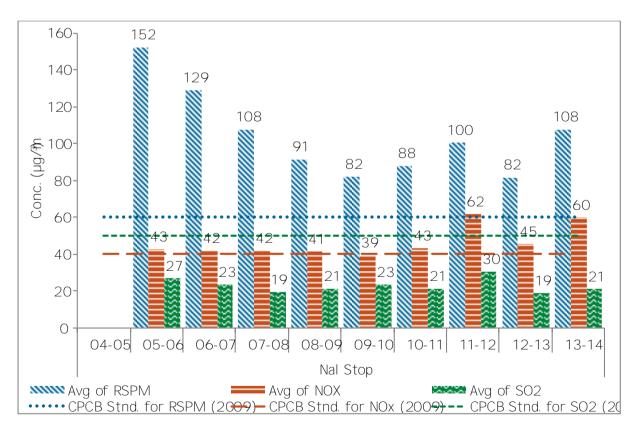



Figure No. 165Annual average trend of SO<sub>2</sub>, NOx and RSPM atNal Stop





# Pune - Swargate, Pune

| Table No. 143 Data fo | r monthly average | reading recorded | astwargate, Pune |
|-----------------------|-------------------|------------------|------------------|
|                       |                   |                  |                  |

| FY     | Ν       | Mor           | nthly average (µg/m)   |                 |
|--------|---------|---------------|------------------------|-----------------|
| 201314 | IN      | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr    | 8       | 84            | 45                     | 20              |
| May    | 9       | 58            | 33                     | 24              |
| Jun    | 8       | 47            | 23                     | 17              |
| Jul    | 9       | 29            | 21                     | 14              |
| Aug    | 8       | 21            | 25                     | 18              |
| Sep    | 9       | 51            | 33                     | 22              |
| Oct    | 9       | 61            | 36                     | 20              |
| Nov    | 8       | 103           | 49                     | 21              |
| Dec    | 9       | 132           | 50                     | 15              |
| Jan    | 9       | 120           | 66                     | 31              |
| Feb    | 8       | 100           | 69                     | 26              |
| Mar    | 7       | 93            | 64                     | 29              |
|        | Total N | % of exceeder | nceof daily readings f | for 201314      |
| 101    |         | 27.7          | 5.0                    | 0.0             |

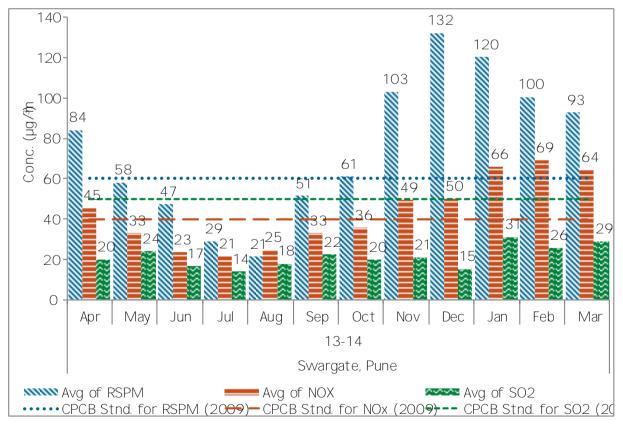



Figure No. 166 Monthly average reading recorded a Swargate, Pune



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            | 44  | 152                    | 43   | 27              |
| 0607            | 95  | 138                    | 43   | 25              |
| 07-08           | 97  | 101                    | 46   | 20              |
| 0809            | 112 | 100                    | 44   | 23              |
| 0910            | 107 | 81                     | 39   | 24              |
| 10-11           | 105 | 80                     | 50   | 23              |
| 11-12           | 91  | 95                     | 63   | 28              |
| 12-13           | 102 | 75                     | 53   | 19              |
| 13-14           | 101 | 75                     | 42   | 21              |

Table No. 144 Data for annual average trend of RSPM, NQ and SO<sub>2</sub>atSwargate, Pune

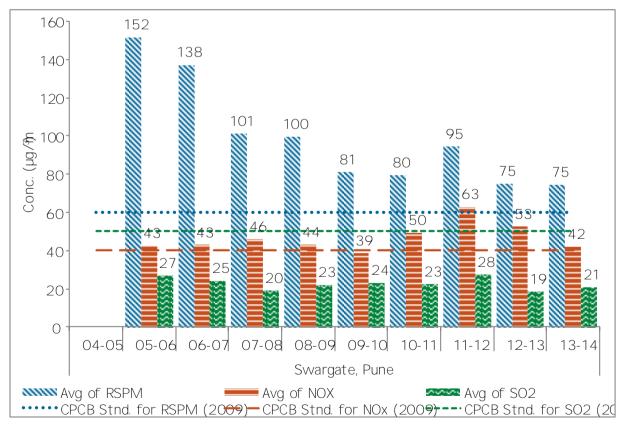



Figure No. 167. Annual average trend of SO<sub>2</sub>, NOx and RSPM at SwargatePune



### Pune - Pimpri - Chinchwad - BOB Building

Table No. 145 Data for monthly average reading recorded *Paimpri* -Chinchwad -BOB Building

| FY     | N       | Mor           | nthly average (µg/m)   |                 |
|--------|---------|---------------|------------------------|-----------------|
| 201314 | IN      | RSPM          | NO x                   | SO <sub>2</sub> |
| Apr    | 24      | 88            | 42                     | 25              |
| May    | 26      | 55            | 32                     | 27              |
| Jun    | 25      | 46            | 28                     | 18              |
| Jul    | 27      | 43            | 22                     | 15              |
| Aug    | 24      | 35            | 27                     | 16              |
| Sep    | 25      | 55            | 32                     | 18              |
| Oct    | 25      | 62            | 31                     | 19              |
| Nov    | 24      | 104           | 38                     | 20              |
| Dec    | 26      | 133           | 62                     | 26              |
| Jan    | 25      | 138           | 62                     | 34              |
| Feb    | 24      | 123           | 55                     | 26              |
| Mar    | 22      | 102           | 44                     | 22              |
|        | Total N | % of exceeder | nceof daily readings f | for 201314      |
|        | 297     | 34.0          | 3.0                    | 0.0             |

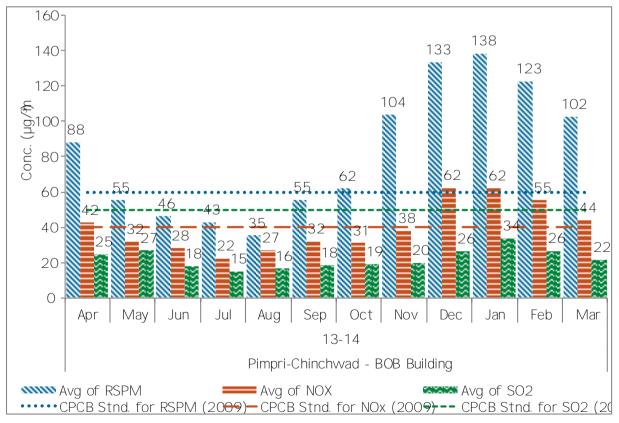
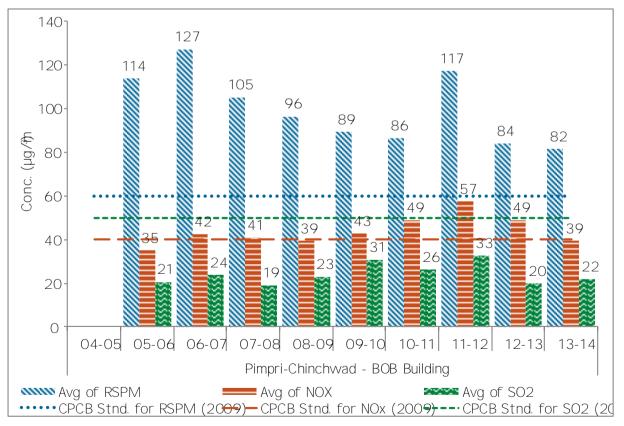


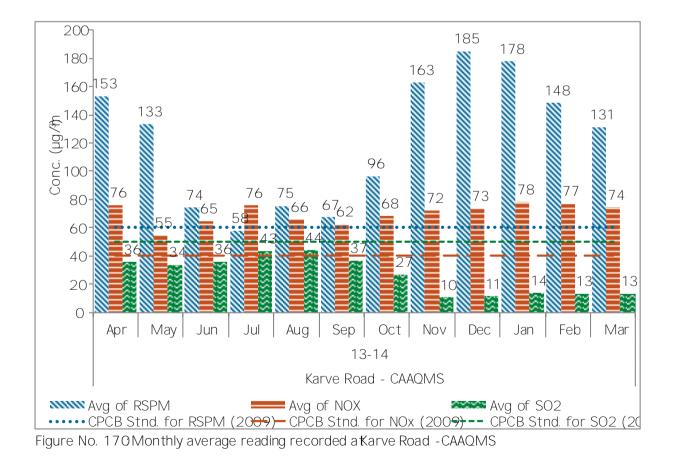

Figure No. 168 Monthly average reading recorded a Pimpri - Chinchwad - BOB Building



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            | 173 | 114                    | 35   | 21              |
| 0607            | 277 | 127                    | 42   | 24              |
| 07-08           | 287 | 105                    | 41   | 19              |
| 0809            | 283 | 96                     | 39   | 23              |
| 0910            | 265 | 89                     | 43   | 31              |
| 10-11           | 300 | 86                     | 49   | 26              |
| 11-12           | 270 | 117                    | 57   | 33              |
| 12-13           | 266 | 84                     | 49   | 20              |
| 13-14           | 297 | 82                     | 39   | 22              |

Table No. 146 Data for annual average trend of RSPM, NQ and SO\_2 at Pimpri -Chinchwad -BOB Building





Figure No. 169 Annual average trend of SO2, NOx and RSPM at Pimpri -Chinchwad -BOB Building



#### Pune - Karve Road - CAAQMS

Table No. 147 Data for monthly average reading recorded & arve Road Ì CAAQMS

| FY      | N   | Mc           | nthly average (µg/m  | )               |
|---------|-----|--------------|----------------------|-----------------|
| 201314  | I N | RSPM         | NO x                 | SO <sub>2</sub> |
| Apr     | 30  | 153          | 76                   | 36              |
| May     | 31  | 133          | 55                   | 34              |
| Jun     | 30  | 74           | 65                   | 36              |
| Jul     | 31  | 58           | 76                   | 43              |
| Aug     | 31  | 75           | 66                   | 44              |
| Sep     | 30  | 67           | 62                   | 37              |
| Oct     | 31  | 96           | 68                   | 27              |
| Nov     | 30  | 163          | 72                   | 10              |
| Dec     | 31  | 185          | 73                   | 11              |
| Jan     | 31  | 178          | 78                   | 14              |
| Feb     | 27  | 148          | 77                   | 13              |
| Mar     | 27  | 131          | 74                   | 13              |
| Total N |     | % of exceede | nceof daily readings | for 201314      |
|         | 360 | 60.8         | 23.6                 | 0.0             |





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            |     |                        |      |                 |
| 07-08           | 247 | 71                     | 43   | 13              |
| 0809            | 266 | 121                    | 39   | 25              |
| 0910            | 280 | 109                    | 35   | 11              |
| 10-11           | 354 | 128                    | 39   | 12              |
| 11-12           | 351 | 131                    | 49   | 11              |
| 12-13           | 361 | 124                    | 66   | 22              |
| 13-14           | 360 | 121                    | 70   | 27              |

| Table No. 148 Data for annual average trend drsPM, NO x and SO2 atKarve Road -CAAQMS |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

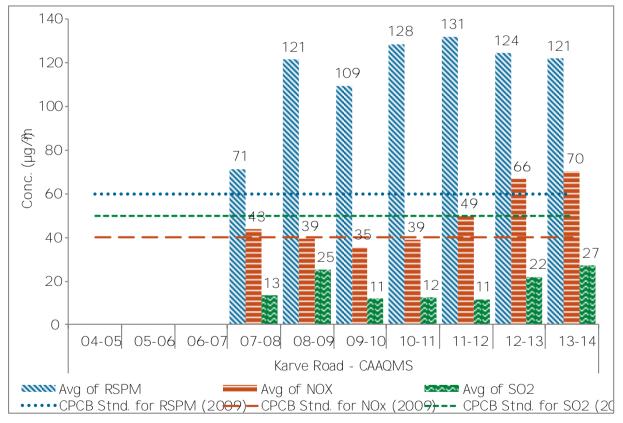



Figure No. 171: Annual average trend of SO<sub>2</sub>, NOx and RSPM atKarve Road Ì CAAQMS





#### Solapur - WIT Campus

| FY     | Ν       | Mor           | nthly average (µg/m)   |                     |
|--------|---------|---------------|------------------------|---------------------|
| 201314 | IN      | RSPM          | NO x                   | SO <sub>2</sub>     |
| Apr    | 9       | 84            | 34                     | 17                  |
| May    | 9       | 95            | 36                     | 15                  |
| Jun    | 8       | 79            | 35                     | 15                  |
| Jul    |         |               |                        |                     |
| Aug    | 9       | 81            | 35                     | 15                  |
| Sep    | 9       | 72            | 35                     | 16                  |
| Oct    | 9       | 83            | 36                     | 15                  |
| Nov    | 8       | 87            | 35                     | 15                  |
| Dec    | 9       | 90            | 35                     | 15                  |
| Jan    | 9       | 84            | 34                     | 15                  |
| Feb    | 8       | 80            | 36                     | 15                  |
| Mar    |         |               |                        |                     |
|        | Total N | % of exceeder | nceof daily readings f | for 201 <i>2</i> 13 |
|        | 87      | 1.1           | 0.0                    | 0.0                 |

Table No. 149 Data for monthly average eading recorded at WIT Campus

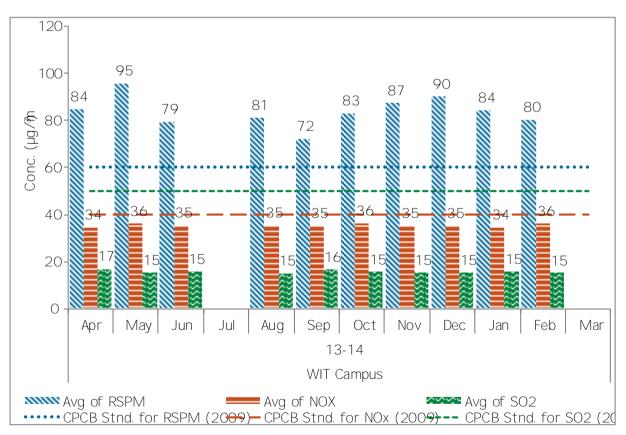



Figure No. 172 Monthly average reading recorded atWIT Campus





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            | 106 | 137                    | 40   | 18              |
| 0506            | 95  | 115                    | 37   | 17              |
| 0607            | 104 | 97                     | 35   | 16              |
| 07-08           | 106 | 86                     | 34   | 17              |
| 0809            | 103 | 76                     | 35   | 17              |
| 0910            | 103 | 71                     | 35   | 17              |
| 10-11           | 107 | 74                     | 35   | 17              |
| 11-12           | 103 | 77                     | 35   | 17              |
| 12-13           | 104 | 78                     | 35   | 17              |
| 13-14           | 87  | 84                     | 35   | 15              |

Table No. 150 Data for annual average tred of RSPM, NO  $_{\rm X}$  and SO  $_{\rm 2}atWIT$  Campus

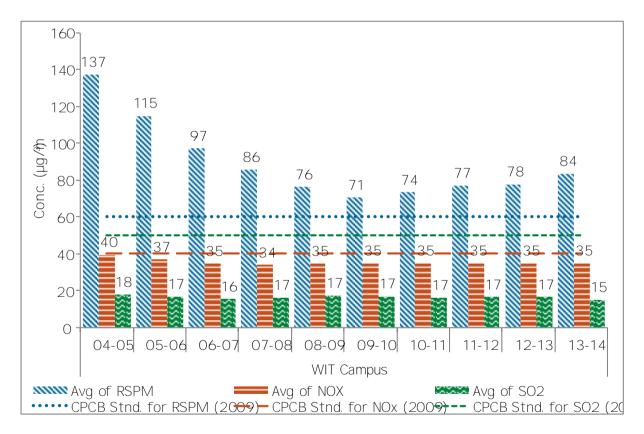



Figure No. 173 Annual average trend of SO<sub>2</sub>, NOx and RSPM atWIT Campus





# Solapur - Saat RastaChithale Clinic

| Table No.  | 1 E 1 Data far manthe | u av la ra al a a a al la a r | a a grad a fact Dacta Chithala Clinia |
|------------|-----------------------|-------------------------------|---------------------------------------|
| I ADIE INO |                       | v averade readind r           | recorded a\$aat RastaChithale Clinic  |
| 100101101  | ro i bata roi mortin  | y avorago i oaanig i          |                                       |

| FY     | Ν       | Mon           | thly average (µg/m)   |                 |
|--------|---------|---------------|-----------------------|-----------------|
| 201314 | IN      | RSPM          | NO x                  | SO <sub>2</sub> |
| Apr    | 9       | 87            | 35                    | 17              |
| May    | 9       | 89            | 34                    | 17              |
| Jun    | 8       | 83            | 35                    | 17              |
| Jul    |         |               |                       |                 |
| Aug    | 9       | 76            | 35                    | 15              |
| Sep    | 8       | 17            | 35                    | 17              |
| Oct    |         |               |                       |                 |
| Nov    | 9       | 83            | 34                    | 14              |
| Dec    | 9       | 83            | 35                    | 15              |
| Jan    | 9       | 93            | 36                    | 16              |
| Feb    | 8       | 77            | 36                    | 16              |
| Mar    |         |               |                       |                 |
|        | Total N | % of exceeden | ceof daily readings t | for 201314      |
|        | 78      | 1.3           | 0.0                   | 0.0             |



Figure No. 174 Monthly average reading recordedatSaat Rasta Chithale Clinic





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            | 104 | 144                    | 40   | 18              |
| 0506            | 95  | 125                    | 38   | 18              |
| 0607            | 104 | 107                    | 36   | 17              |
| 07-08           | 100 | 96                     | 34   | 18              |
| 0809            | 105 | 74                     | 36   | 18              |
| 0910            | 103 | 66                     | 36   | 17              |
| 10-11           | 108 | 69                     | 34   | 17              |
| 11-12           | 96  | 77                     | 35   | 17              |
| 12-13           | 95  | 81                     | 35   | 17              |
| 13-14           | 78  | 77                     | 35   | 16              |

Table No. 152 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atSaat RastaChithale Clinic

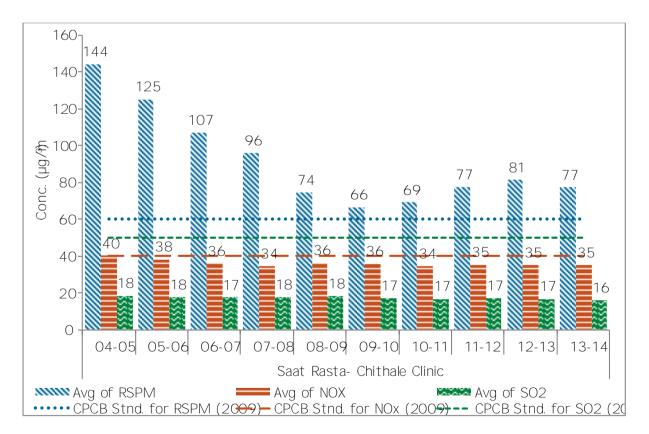



Figure No. 175 Annual average trend of SO<sub>2</sub>, NOx and RSPM atSaat Rasta Chithale Clinic



# Solapur - Solapur

| FY     | Ν       | Mor                                          | nthly average (µg/m) |      |
|--------|---------|----------------------------------------------|----------------------|------|
| 201314 | IN      | RSPM                                         | NO x                 | SO 2 |
| Apr    | 29      | 97                                           | 50                   | 17   |
| May    | 31      | 90                                           | 49                   | 16   |
| Jun    | 29      | 58                                           | 41                   | 14   |
| Jul    | 30      | 44                                           | 32                   | 14   |
| Aug    | 31      | 47                                           | 31                   | 15   |
| Sep    | 29      | 52                                           | 31                   | 14   |
| Oct    | 30      | 80                                           | 36                   | 13   |
| Nov    | 30      | 130                                          | 42                   | 15   |
| Dec    | 31      | 153                                          | 41                   | 15   |
| Jan    | 30      | 154                                          | 52                   | 17   |
| Feb    | 27      | 134                                          | 52                   | 15   |
| Mar    | 29      | 117                                          | 54                   | 14   |
|        | Total N | % of exceedence of daily readings for 201314 |                      |      |
| 356    |         | 46.3                                         | 0.0                  | 0.0  |

Table No. 153 Data for monthly average reading recorded & alapur

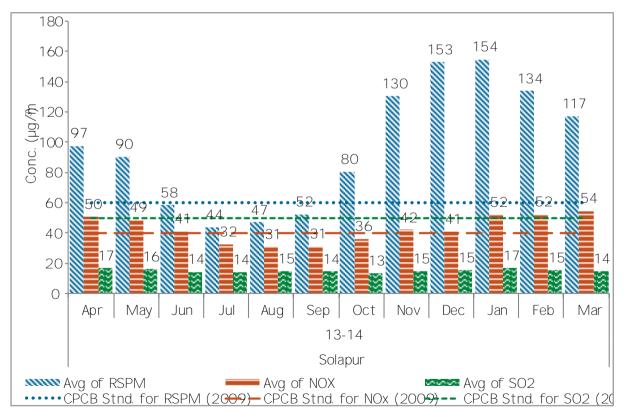
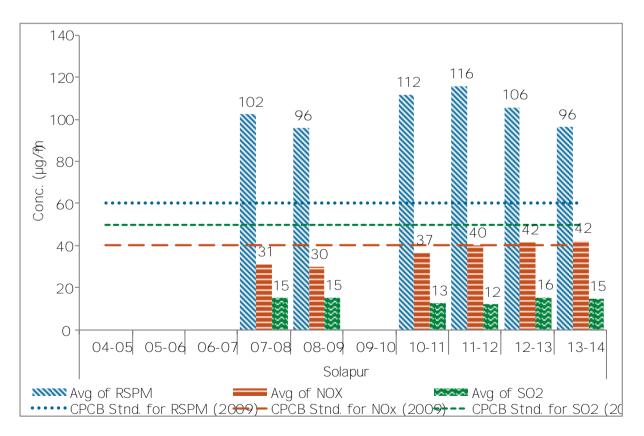
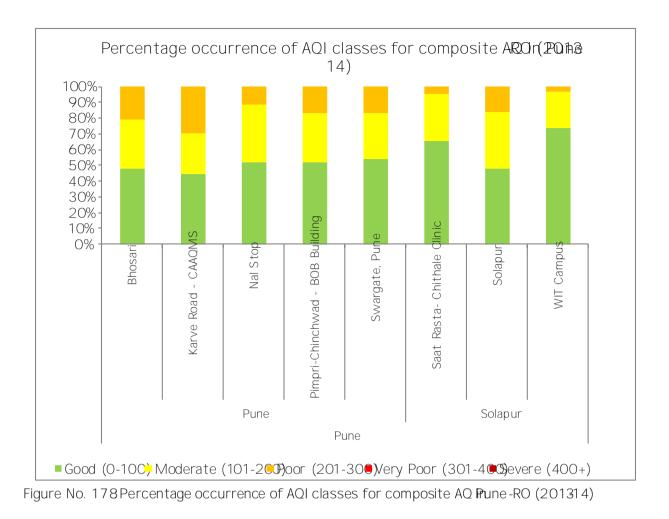


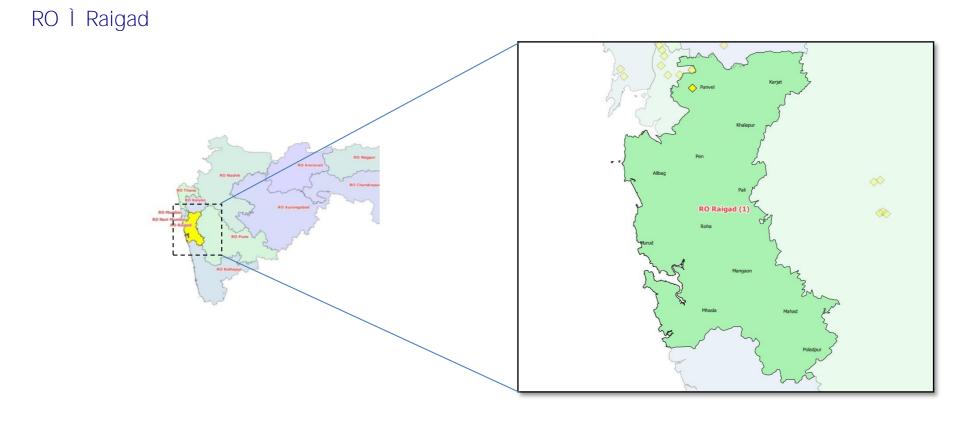

Figure No. 176 Monthly average reading recorded a Solapur



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 06-07           |     |                        |      |                 |
| 07-08           | 195 | 102                    | 31   | 15              |
| 0809            | 231 | 96                     | 30   | 15              |
| 0910            |     |                        |      |                 |
| 10-11           | 250 | 112                    | 37   | 13              |
| 11-12           | 359 | 116                    | 40   | 12              |
| 12-13           | 351 | 106                    | 42   | 16              |
| 13-14           | 356 | 96                     | 42   | 15              |

Table No. 154 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atSolapur



Figure No. 177. Annual average trend of SO<sub>2</sub>, NOx and RSPM atSolapur











| MPCB RO | Region | Station | Station name              | Туре        | Latitude (deg)  | Longitude (deg) |
|---------|--------|---------|---------------------------|-------------|-----------------|-----------------|
|         |        | code    |                           |             |                 |                 |
| Raigad  | Panvel | 495     | Panvel-Water Supply Plant | Residential | 18° 59' 23.8" N | 73° 07' 03.5" E |

# Panvel - Panvel - Water Supply Plant

| FY     | Ν       | Mor                                          | nthly average (µg/m) |                 |
|--------|---------|----------------------------------------------|----------------------|-----------------|
| 201314 |         | RSPM                                         | NO x                 | SO <sub>2</sub> |
| Apr    | 8       | 433                                          | 46                   | 18              |
| May    | 9       | 221                                          | 44                   | 18              |
| Jun    | 9       | 101                                          | 29                   | 11              |
| Jul    |         |                                              |                      |                 |
| Aug    |         |                                              |                      |                 |
| Sep    | 8       | 80                                           | 35                   | 14              |
| Oct    | 9       | 111                                          | 45                   | 17              |
| Nov    | 9       | 194                                          | 43                   | 17              |
| Dec    | 8       | 231                                          | 40                   | 16              |
| Jan    | 9       | 208                                          | 43                   | 17              |
| Feb    |         |                                              |                      |                 |
| Mar    | 9       | 265                                          | 46                   | 18              |
|        | Total N | % of exceedence of daily readings for 201314 |                      |                 |
| 78     |         | 74.4                                         | 0.0                  | 0.0             |

Table No. 155 Data for monthly average reading recorded anvel-Water Supply Plant

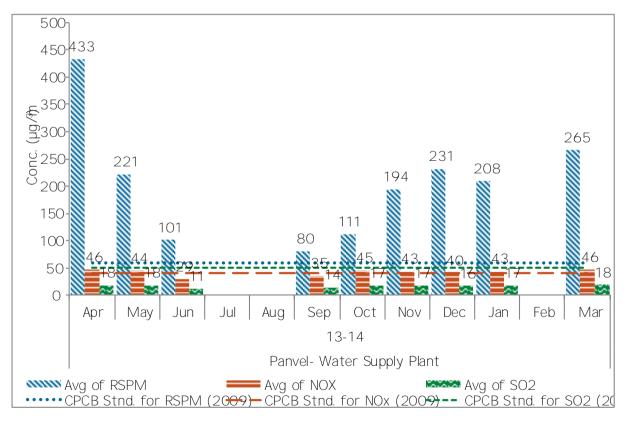



Figure No. 179 Monthly average reading recordedatPanvel - Water Supply Plant



| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            |     |                        |      |                 |
| 0506            |     |                        |      |                 |
| 0607            | 71  | 115                    | 35   | 14              |
| 07-08           | 119 | 143                    | 37   | 12              |
| 0809            | 106 | 132                    | 40   | 14              |
| 0910            | 102 | 71                     | 42   | 12              |
| 10-11           | 100 | 119                    | 35   | 15              |
| 11-12           | 97  | 140                    | 42   | 15              |
| 12-13           | 103 | 168                    | 42   | 16              |
| 13-14           | 78  | 203                    | 41   | 16              |

Table No. 156 Data for annual average trend of RSPM, NQ and SO\_atPanvel-Water Supply Plant

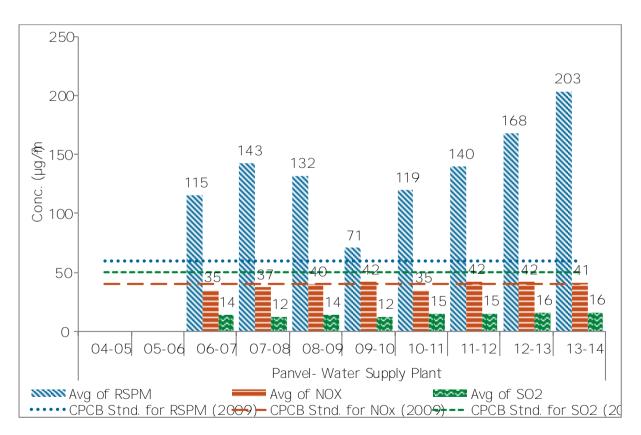
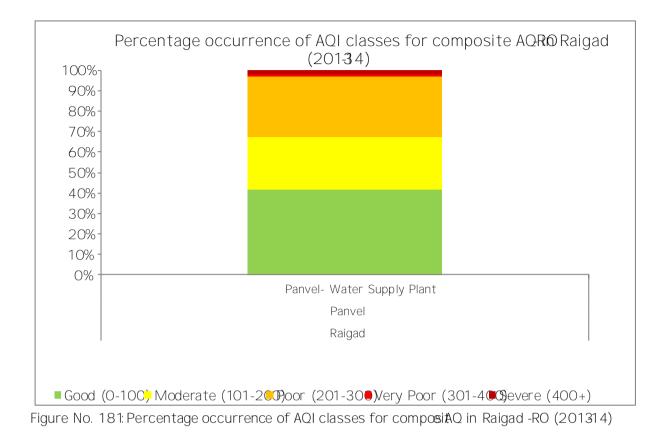
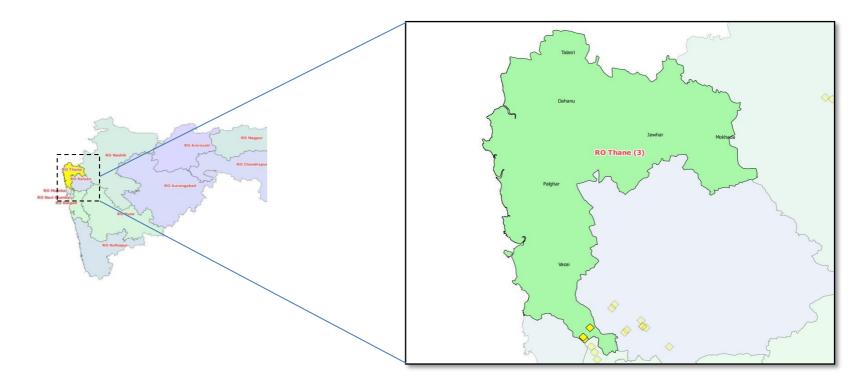




Figure No. 180Annual average trend of SO<sub>2</sub>, NOx and RSPM atPanvel - Water Supply Plant










# RO Ì Thane



| MPCB RO | Region | Station | Station name | Туре                  | Latitude (deg)  | Longitude (deg) |
|---------|--------|---------|--------------|-----------------------|-----------------|-----------------|
|         |        | code    |              |                       |                 |                 |
|         | Thane  | 303     | Kopri        | Residential           | 19° 10' 55.3" N | 72° 58' 17.1" E |
| Thoma   | Thane  | 304     | Naupada      | Rural and other areas | 19° 11' 174." N | 72° 58' 04.1" E |
| Thane   | Thane  | 305     | Kolshet      | Industrial            | 19° 13' 12.4" N | 72° 59' 19.4" E |
|         | Thane  |         | Balkum/Glaxo | Industrial            | 19° 13' 05.8" N | 72° 57' 59.7" E |

# Thane - Kopri

| FY     | Ν       | Mor                                          | Monthly average (µg/m) |      |  |
|--------|---------|----------------------------------------------|------------------------|------|--|
| 201314 | IN      | RSPM                                         | NO x                   | SO 2 |  |
| Apr    | 8       | 205                                          | 33                     | 23   |  |
| May    | 18      | 154                                          | 32                     | 23   |  |
| Jun    | 8       | 103                                          | 25                     | 20   |  |
| Jul    | 9       | 78                                           | 26                     | 20   |  |
| Aug    | 9       | 57                                           | 34                     | 15   |  |
| Sep    | 8       | 43                                           | 33                     | 13   |  |
| Oct    | 9       | 75                                           | 40                     | 12   |  |
| Nov    | 10      | 120                                          | 45                     | 11   |  |
| Dec    | 8       | 135                                          | 51                     | 13   |  |
| Jan    | 9       | 132                                          | 61                     | 12   |  |
| Feb    | 12      | 118                                          | 68                     | 13   |  |
| Mar    |         |                                              |                        |      |  |
|        | Total N | % of exceedence of daily readings for 201314 |                        |      |  |
|        | 108     | 64.8                                         | 0.0                    | 0.0  |  |

Table No. 157. Panvel - Water Supply Plant: Data for monthly average reading recorded attopri

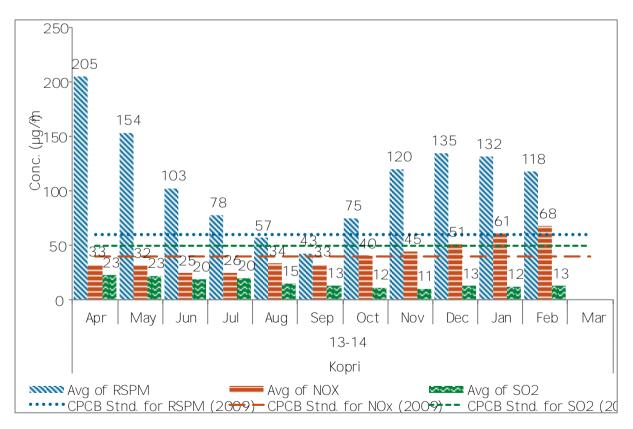



Figure No. 182 Monthly average reading recorded atKopri





| Year            | Ν   | Anr  | Annual average (µg/m³) |                 |  |
|-----------------|-----|------|------------------------|-----------------|--|
|                 |     | RSPM | NO x                   | SO <sub>2</sub> |  |
| Annual Standard |     | 60   | 40                     | 50              |  |
| 0405            | 62  | 45   | 11                     | 8               |  |
| 0506            | 97  | 51   | 9                      | 6               |  |
| 0607            | 111 | 51   | 10                     | 12              |  |
| 07-08           | 111 | 50   | 10                     | 11              |  |
| 0809            | 103 | 60   | 16                     | 11              |  |
| 0910            | 97  | 50   | 13                     | 11              |  |
| 10-11           | 117 | 46   | 11                     | 12              |  |
| 11-12           | 123 | 60   | 9                      | 12              |  |
| 12-13           | 110 | 86   | 15                     | 20              |  |
| 13-14           | 108 | 114  | 41                     | 16              |  |

Table No. 158 Data for annual average trend of RSPM, NQand SO<sub>2</sub>atKopri

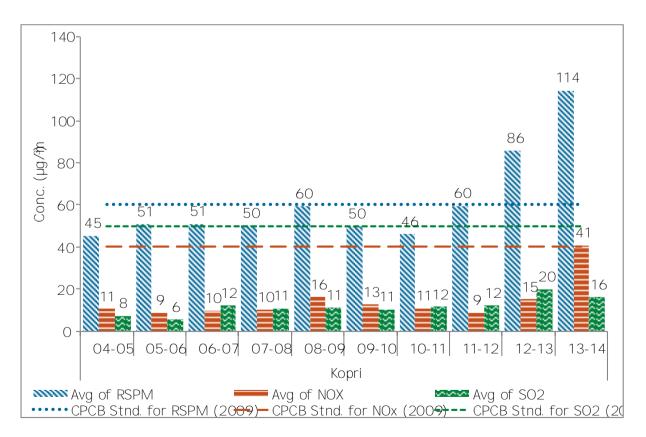



Figure No. 183 Annual average trend of SO<sub>2</sub>, NOx and RSPM at-Kopri



#### Thane - Naupada

| FY     | Ν       | Mor                                          | nthly average (µg/m | \$)             |
|--------|---------|----------------------------------------------|---------------------|-----------------|
| 201314 | IN      | RSPM                                         | NO x                | SO <sub>2</sub> |
| Apr    | 8       | 187                                          | 34                  | 25              |
| May    | 8       | 168                                          | 34                  | 24              |
| Jun    | 10      | 104                                          | 25                  | 19              |
| Jul    | 8       | 81                                           | 26                  | 19              |
| Aug    | 9       | 51                                           | 35                  | 15              |
| Sep    | 9       | 67                                           | 33                  | 14              |
| Oct    | 9       | 77                                           | 42                  | 13              |
| Nov    | 9       | 124                                          | 48                  | 12              |
| Dec    | 9       | 130                                          | 51                  | 17              |
| Jan    | 8       | 148                                          | 61                  | 13              |
| Feb    | 12      | 120                                          | 71                  | 14              |
| Mar    |         |                                              |                     |                 |
|        | Total N | % of exceedence of daily readings for 201314 |                     |                 |
| 99     |         | 57.6                                         | 0.0                 | 0.0             |

Table No. 159 Data for monthly average reading recorded a Naupada

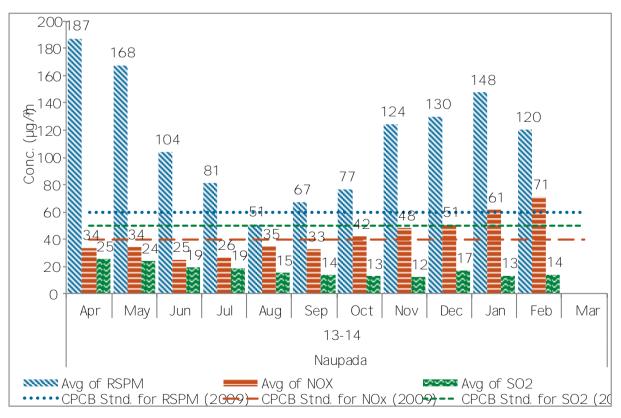



Figure No. 184 Monthly average reading recorded a Naupada





| Year            | Ν   | Annual average (µg/m³) |      |                 |
|-----------------|-----|------------------------|------|-----------------|
|                 |     | RSPM                   | NO x | SO <sub>2</sub> |
| Annual Standard |     | 60                     | 40   | 50              |
| 0405            | 58  | 46                     | 11   | 8               |
| 0506            | 98  | 51                     | 10   | 6               |
| 0607            | 105 | 52                     | 9    | 12              |
| 07-08           | 104 | 50                     | 10   | 11              |
| 0809            | 100 | 60                     | 15   | 11              |
| 0910            | 112 | 55                     | 21   | 14              |
| 10-11           | 122 | 48                     | 13   | 14              |
| 11-12           | 123 | 56                     | 10   | 13              |
| 12-13           | 103 | 93                     | 16   | 21              |
| 13-14           | 99  | 113                    | 43   | 17              |

Table No. 160 Data for annual average trend of RSPM, NQ and SO2 atNaupada

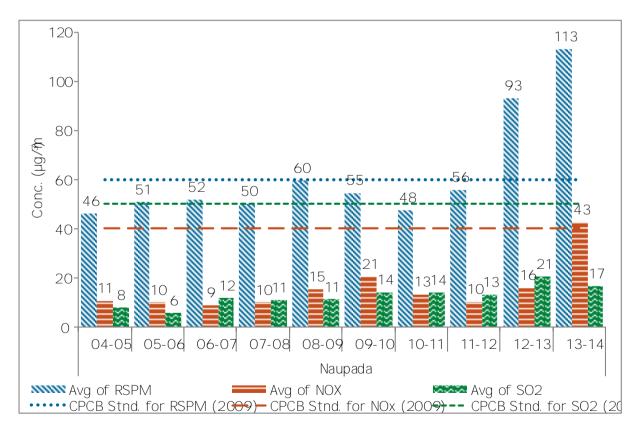



Figure No. 185Annual average trend of SO<sub>2</sub>, NOx and RSPM atNaupada



#### Thane - Kolshet

Table No. 161: Data for monthly average reading recorded a Kolshet

No Data: Station not operational

Figure No. 186 Monthly average reading recorded a Kolshet

No Data: Station not operational





| Year            | Ν  | Annual average (µg/m³) |      |      |
|-----------------|----|------------------------|------|------|
|                 |    | RSPM                   | NO x | SO 2 |
| Annual Standard |    | 60                     | 40   | 50   |
| 0405            | 62 | 48                     | 12   | 9    |
| 0506            | 85 | 51                     | 10   | 6    |
| 0607            | 91 | 63                     | 11   | 13   |
| 07-08           | 96 | 53                     | 14   | 14   |
| 0809            | 94 | 63                     | 21   | 15   |
| 0910            | 80 | 57                     | 21   | 13   |
| 10-11           | 21 | 48                     | 13   | 12   |
| 11-12           | 45 | 57                     | 13   | 19   |
| 12-13           | 97 | 73                     | 14   | 18   |
| 13-14           |    |                        |      |      |

Table No. 162 Data for annual average trend of RSPM, NO<sub>4</sub> and SO<sub>2</sub> atKolshet

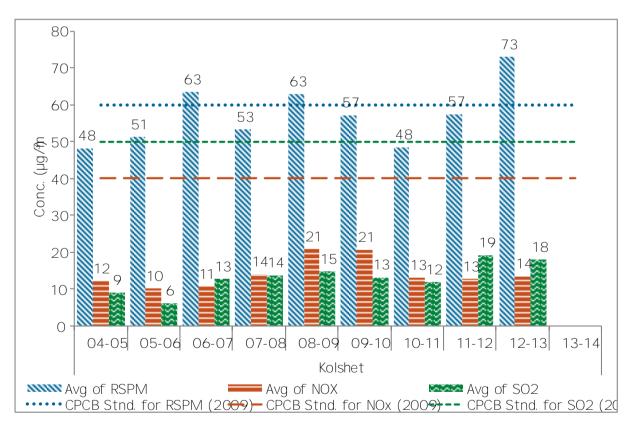



Figure No. 187. Annual average trend of SO<sub>2</sub>, NOx and RSPM atKolshet



## Thane Ì Balkum Glaxo

| FY     | Ν       | Monthly average (µg/m³)                     |      |                 |  |
|--------|---------|---------------------------------------------|------|-----------------|--|
| 201314 | IN IN   | RSPM                                        | NO x | SO <sub>2</sub> |  |
| May    | 8       | 140                                         | 31   | 23              |  |
| Jun    | 8       | 96                                          | 22   | 16              |  |
| Jul    | 10      | 80                                          | 23   | 14              |  |
| Aug    | 8       | 62                                          | 32   | 15              |  |
| Sep    | 9       | 70                                          | 32   | 15              |  |
| Oct    | 10      | 87                                          | 37   | 11              |  |
| Nov    | 9       | 115                                         | 45   | 11              |  |
| Dec    | 8       | 137                                         | 44   | 12              |  |
| Jan    | 10      | 135                                         | 49   | 13              |  |
| Feb    |         |                                             |      |                 |  |
| Mar    |         |                                             |      |                 |  |
|        | Total N | % of exceedence of daily readings for 20134 |      |                 |  |
|        | 80      | 67.5                                        |      |                 |  |

Table No. 163 Data for monthly average reaiting recorded at Balkum Glaxo

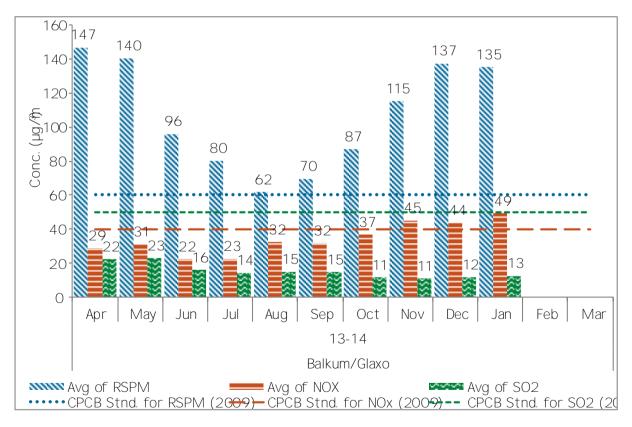



Figure No. 188 Monthly average reading recorded at Balkum Glaxo



| Year            | Ν  | Annual average (µg/m³) |      |      |
|-----------------|----|------------------------|------|------|
|                 |    | RSPM                   | NO x | SO 2 |
| Annual Standard | ·  | 60                     | 40   | 50   |
| 0405            |    |                        |      |      |
| 0506            |    |                        |      |      |
| 0607            |    |                        |      |      |
| 07-08           |    |                        |      |      |
| 0809            |    |                        |      |      |
| 0910            |    |                        |      |      |
| 10-11           |    |                        |      |      |
| 11-12           |    |                        |      |      |
| 12-13           |    |                        |      |      |
| 13-14           | 90 | 107                    | 34   | 15   |

Table No. 164 Data for annual average trend foRSPM, NO  $_{\rm X}$  and SO\_2at Balkum Glaxo

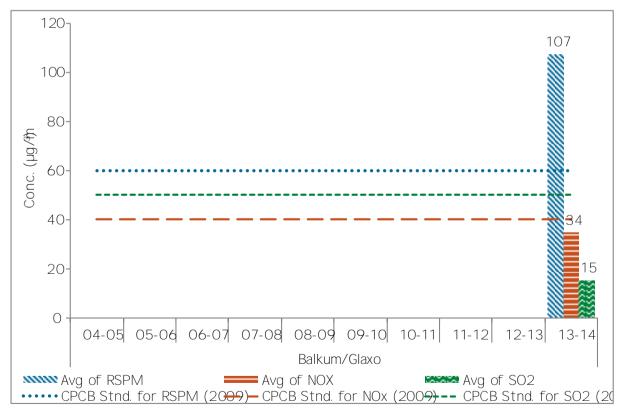



Figure No. 189 Annual average trend of SO<sub>2</sub>, NOx and RSPM at Balkum Glaxo



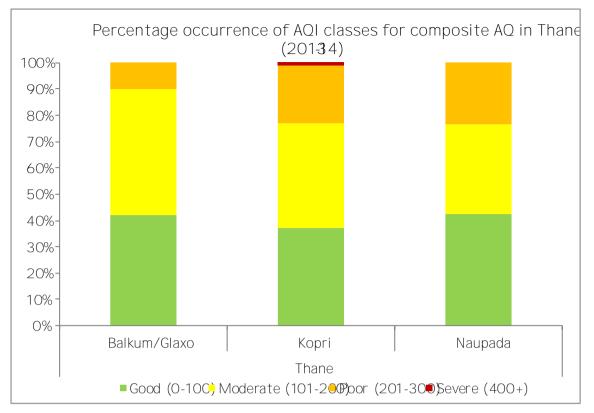
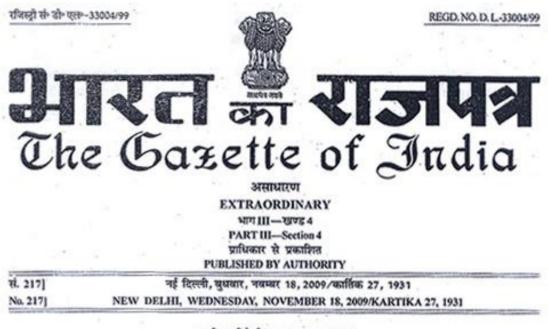




Figure No. 190Percentage occurrence of AQI classes for composite AQ Thane -RO (201314)







राष्ट्रीय परिवेशी खावु गुणवला मानक केन्द्रीय प्रदूषण नियंत्रण बोर्ड अधिसूचना

नई दिल्ली, 18 भवम्पर, 2009

सं, थी-29016/20/90/पी.सी.आई.-1.—वायु (प्रदूषण निवारण एवं नियंत्रण) अधिनिमय, 1981 (1981 का 14) की घारा 16 की उपचारा (2) (एच) द्वारा प्रदत्त शक्तियों का प्रयोग करते हुए तथा अधिसूचना संख्या का.आ. 384(ई), दिनांक 11 अप्रैल, 1994 और का.आ. 935 (ई) दिनांक 14 अक्टूबर, 1998 के अधिक्रमण में केन्द्रीय प्रदूषण नियंत्रण बोर्ड इसके द्वारा तत्काल प्रमाव से सब्दीय परिवेशी वायु गुणवत्ता मानक अधिसूचित करता है, जो इस प्रकार है-

राष्ट्रीय परिवेशी वायु गुणवत्ता मानुक

| æ,  | प्रदूषक                                                                             | समय ·                 | परिवेशी वायु में सान्द्रण                           |                                                                                |                                                                       |
|-----|-------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| સં. |                                                                                     | आधारित<br>औसत         | औद्योगिक,<br>रिहायशी,<br>ग्रामीण और<br>अन्य क्षेत्र | पारिस्थितिकी<br>य<br>संवेदनशील<br>क्षेत्र (केन्द्र<br>सरकार द्वार<br>अधिसूचित) | प्रबोधन की पद्धति                                                     |
| (1) | (2)                                                                                 | (3)                   | (4)                                                 | (5)                                                                            | (6)                                                                   |
| 1   | सल्फर डाई आक्साइड<br>(SO <sub>2</sub> ), μg/m <sup>3</sup>                          | वार्षिक*<br>24 घंटे** | 50<br>80                                            | 20<br>80                                                                       | -उन्नत वेस्ट और गाईक<br>-परावेगनी परिदीप्ती                           |
| 2   | नाइट्रोजन डाई आक्साइड<br>(NO <sub>2</sub> ), μg/m <sup>3</sup>                      | वार्षिक*<br>24 घंटे** | 40<br>80                                            | 30<br>80                                                                       | -তথারাইর তাঁকৰ और हॉवाइजर<br>(सोडियम-आर्सेनाईट)<br>-रासायनिक संदीप्ति |
| 3   | विविक्त पदार्थ (10माइक्रान<br>से कम आकार)या PM <sub>10</sub> .<br>µg/m <sup>3</sup> | वार्षिक*<br>24 घंटे** | 60<br>100                                           | 60<br>100                                                                      | -हरात्मैक विश्लेषण<br>-टोयम<br>-बीटा तनुकरण पद्धति                    |





| 4  | विविक्त पदार्थ (2.5<br>माइक्रान से कम आकार या                                        | वार्षिक*<br>24 घंटे** | 40<br>60    | 40<br>60    | -हरात्मक विश्लेषण<br>-टोयम                                                                                                |
|----|--------------------------------------------------------------------------------------|-----------------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------|
| 5  | PM <sub>2.5</sub> , μg/m <sup>3</sup><br>ओजोन (O <sub>3</sub> )<br>μg/m <sup>3</sup> | 8 ਬਂਟੇ**<br>1 ਬਂਟਾ**  | 100<br>180  | 100<br>180  | -बीटा तनुकरण पद्धति<br>-पराबैगनी द्वीप्तिकाल<br>-रासायनिक संदीप्ति<br>-रासायनिक पद्धति                                    |
| 6  | सीसा (Pb)<br>μg/m <sup>3</sup>                                                       | বার্ষিক*<br>24 ঘট**   | 0.50<br>1.0 | 0.50<br>1.0 | ई.पी.एम 2000 या समरूप<br>फिल्टर पेपर का प्रयोग करके<br>AAS/ICP पद्धति<br>-टेफलॉन फिल्टर पेपर का<br>प्रयोग करते हुए ED-XRF |
| 7  | कार्बन मोनोक्साइड (CO)<br>mg/m <sup>3</sup>                                          | 8 ਬਂਟੇ**<br>1 ਬਂਟਾ**  | 02<br>04    | 02<br>04    | -अविपेक्षी अवरक्त (NDIR)<br>रपैक्ट्रम मापन                                                                                |
| 8  | अमोनिया (NH <sub>3</sub> )<br>µg/m <sup>3</sup>                                      | वार्षिक*<br>24 घंटे** | 100<br>400  | 100<br>400  | -रासायनिक संद्रीप्ती<br>-इण्डोफिनॉल ब्ल्यू पद्धति                                                                         |
| 9  | बैन्जीन (C <sub>6</sub> H <sub>6</sub> )<br>µg/m <sup>3</sup>                        | वार्षिक*              | 05          | 05          | <ul> <li>गैस क्रोमेटोग्राफी आघारित<br/>सतत् विश्लेषक</li> <li>अधिशोषण तथा निशोषण के<br/>बाद गैस क्रोमेटोग्राफी</li> </ul> |
| 10 | बैन्जो (ए) पाईरीन (BaP)<br>केवल विविक्त कण,<br>ng/m <sup>3</sup>                     | वार्षिक*              | 01          | 01          | -विलायक निष्कर्षण के बाद<br>HPLC/GC द्वारा विश्लेषण                                                                       |
| 11 | आर्सेनिक (As)<br>ng/m <sup>3</sup>                                                   | वार्षिक*              | 06          | 06          | -असंवितरक अवरक्त<br>स्पैक्ट्रामिती ईपी.एम. 2000 या<br>समस्त्र्य फिल्टर पेपर का प्रयोग<br>करके ICP/AAS पद्धति              |
| 12 | निकिल (Ni)<br>ng/m <sup>3</sup>                                                      | বাৰ্ষিক*              | 20          | 20          | ई.पी.एम. 2000 या समरूप<br>फिल्टर पेपर का प्रयोग करके<br>ICP/AAS पद्धति                                                    |

\* वर्ष में एक समान अतंशलों पर सप्ताह में दो बार प्रति 24 घंटे तक किसी एक स्थान विशेष पर लिये गये न्यूनतम 104 मापों का वार्षिक अंकगणीतीय औसत ।

\*\* वर्ष में 98 प्रतिशत समय पर 24 घंटे या 8 घंटे या 1 घंटा के मानीटर मापमान, जो लागू हो , अनुपालन कये जाएंगे । दो प्रतिशत समय पर यह मापमान अधिक हो सकता है, किन्तु क्रमिक दो मानीटर करने के दिनों पर नहीं ।

टिप्पणीः

 जब कभी और जहां भी किसी अपने-अपने प्रवर्ग के लिये दो क्रमिक प्रबोधन दिनों पर मापित मूल्य, उग्रर विनिर्दिष्ट सीमा से अधिक हो तो इसे नियमित या निरंतर प्रबोधन तथा अतिरिक्त अन्वेषण करवाने के लिये पर्याप्त कारण समझा जायेगा ।

> संत प्रसाद गौतम, अध्यक्ष [विज्ञापन-111/4/184/09/असा.]

टिप्पणीः राष्ट्रीय परिवेशी वायु गुणवत्ता मानक संबंधी अधिसूचनाएँ, केन्द्रीय प्रदूषण नियंत्रण बोर्ड द्वारा भारत के राजपत्र आसाघरण में अधिसूचना संख्या का.आ. 384 (ई), दिनांक 11 अप्रैल, 1994 एवं का. आ. 935 (ई), दिनांक 14 अक्टूबर, 1998 द्वारा प्रकाशित की गयी थी ।



[भाग ।।।–खण्ड 4]

भारत का राजपत्र : असाधारण

3

#### NATIONALAMBIENTAIR QUALITY STANDARDS CENTRAL POLLUTION CONTROL BOARD NOTIFICATION New Delhi, the 18th November, 2009

No. B-29016/20/90/PCI-L-In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevention and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in supersession of the Notification No(s). S.O. 384(E), dated 11<sup>th</sup> April, 1994 and S.O. 935(E), dated 14<sup>th</sup> October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:-

#### NATIONAL AMBIENT AIR QUALITY STANDARDS

| S.<br>No. | Pollutant                                                 | Time Weighted         | Concentration in Ambient Air                        |                                                                          |                                                               |  |
|-----------|-----------------------------------------------------------|-----------------------|-----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|--|
|           |                                                           | Average               | Industrial,<br>Residential, Rural<br>and Other Area | Ecologically<br>Sensitive Area<br>(notified by<br>Central<br>Government) | Methods of Measurement                                        |  |
| (1)       | (2)                                                       | (3)                   | (4)                                                 | (5)                                                                      | (6)                                                           |  |
| 1         | Sulphur Dioxide<br>(SO <sub>2</sub> ), µg/m <sup>3</sup>  | Annual*<br>24 hours** | 50<br>80                                            | 20<br>80                                                                 | - Improved West and<br>Gaeke<br>-Ultraviolet fluorescence     |  |
| 2         | Nitrogen Dioxide<br>(NO <sub>2</sub> ), µg/m <sup>3</sup> | Annual*<br>24 hours** | 40                                                  | 30                                                                       | - Modified Jacob &<br>Hochheiser (Na-                         |  |
|           |                                                           | 24 nours              | 80                                                  | 80                                                                       | Arsenite)<br>- Chemiluminescence                              |  |
| 3         | Particulate Matter<br>(size less than                     | Annual*               | 60                                                  | . 60                                                                     | <ul> <li>Gravimetric</li> <li>TOEM</li> </ul>                 |  |
|           | 10µm) or PM10<br>µg/m <sup>3</sup>                        | 24 hours**            | 100                                                 | 100                                                                      | - Beta attenuation                                            |  |
| 4         | Particulate Matter<br>(size less than                     | Annual*               | 40                                                  | 40                                                                       | <ul> <li>Gravimetric</li> <li>TOEM</li> </ul>                 |  |
|           | 2.5µm) or PM <sub>2.5</sub><br>µg/m <sup>3</sup>          | 24 hours**            | 60                                                  | 60                                                                       | - Beta attenuation                                            |  |
| 5         | Ozone (O <sub>3</sub> )<br>µg/m <sup>3</sup>              | 8 hours**             | 100                                                 | 100                                                                      | - UV photometric<br>- Chemilminescence                        |  |
|           | CROSLICS                                                  | 1 hour**              | 180                                                 | 180                                                                      | - Chemical Method                                             |  |
| 6         | Lead (Pb)<br>µg/m <sup>3</sup>                            | Annual*               | 0.50                                                | 0.50                                                                     | AAS /ICP method after<br>sampling on EPM 2000                 |  |
|           | 6                                                         | 24 hours**            | 1.0                                                 | 1.0                                                                      | or equivalent filter paper<br>- ED-XRF using Teflon<br>filter |  |
| 7         | Carbon<br>Monoxide (CO)<br>mg/m <sup>3</sup>              | 8 hours**             | 02                                                  | 02                                                                       | Non Dispersive Infra<br>Red (NDIR)                            |  |
| 8         | Ammonia (NH3)<br>µg/m <sup>3</sup>                        | Annual*<br>24 hours** | 100<br>400                                          | 100                                                                      | -Chemiluminescence<br>-Indophenol blue method                 |  |





THE GAZETTE OF INDIA : EXTRAORDINARY

[PART III-SEC. 4]

| (1) | (2)                                                                    | (3)     | (4) | (5) | (6)                                                                                                            |
|-----|------------------------------------------------------------------------|---------|-----|-----|----------------------------------------------------------------------------------------------------------------|
| 9   | Benzene (C <sub>6</sub> H <sub>6</sub> )<br>µg/m <sup>3</sup>          | Annual* | 05  | 05  | Gas chromatography<br>based continuous<br>analyzer     Adsorption and<br>Desorption followed by<br>GC analysis |
| 10  | Benzo(o)Pyrene<br>(BaP) - particulate<br>phase only, ng/m <sup>3</sup> | Annual* | 01  | 01  | <ul> <li>Solvent extraction<br/>followed by HPLC/GC<br/>analysis</li> </ul>                                    |
| 11  | Arsenic (As),<br>ng/m <sup>3</sup>                                     | Annual* | 06  | 06  | <ul> <li>AAS /ICP method after<br/>sampling on EPM 2000<br/>or equivalent filter paper</li> </ul>              |
| 12  | Nickel (Ni), ng/m <sup>3</sup>                                         | Annual* | 20  | 20  | AAS /ICP method after<br>sampling on EPM 2000<br>or equivalent filter paper                                    |

 Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

\*\* 24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

Note. — Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

> SANT PRASAD GAUTAM, Chairman [ADVT-III/4/184/09/Exty.]

Note:

The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India, Extraordinary vide notification No(s). S.O. 384(E), dated 11<sup>th</sup> April, 1994 and S.O. 935(E), dated 14<sup>th</sup> October, 1998.

Printed by the Manager, Government of India Press, Ring Road, Mayapuri, New Delhi-110064 and Published by the Controller of Publications, Delhi-110054.







Maharashtra Pollution Control Board महाराष्ट्र प्रदूषण नियंत्रण मंडळ

Maharashtra Pollution Control Board Kalpataru Point, d and th floor, Opp. Cine Planet, Sion Circle, Mumbai 400 022 Telephone : +91 2240207824014701 Fax : +91 224024068 Website : <u>http//mpcb.gov.</u>in/



...towards global sustainable development

The Energy and Resources Institute Western Regional Centre, 318 Raheja Arcade, Sectldr Belapur CBD, Navi Mumbai400614 Telephone : +9122275800/2410241615 Fax : +912227580022 Website : www.teriin.org